We have devised an approach to cancer class prediction from gene expression profiling, based on an enhancement of the simple nearest prototype (centroid) classifier. We shrink the prototypes and hence obtain a classifier that is often more accurate than competing methods. Our method of ''nearest shrunken centroids'' identifies subsets of genes that best characterize each class. The technique is general and can be used in many other classification problems. To demonstrate its effectiveness, we show that the method was highly efficient in finding genes for classifying small round blue cell tumors and leukemias.
SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, can neutralize the virus. It is, however, unknown which features of the serological response may affect clinical outcomes of COVID-19 patients. We analyzed 983 longitudinal plasma samples from 79 hospitalized COVID-19 patients and 175 SARS-CoV-2-infected outpatients and asymptomatic individuals. Within this cohort, 25 patients died of their illness. Higher ratios of IgG antibodies targeting S1 or RBD domains of spike compared to nucleocapsid antigen were seen in outpatients who had mild illness versus severely ill patients. Plasma antibody increases correlated with decreases in viral RNAemia, but antibody responses in acute illness were insufficient to predict inpatient outcomes. Pseudovirus neutralization assays and a scalable ELISA measuring antibodies blocking RBD-ACE2 interaction were well correlated with patient IgG titers to RBD. Outpatient and asymptomatic individuals’ SARS-CoV-2 antibodies, including IgG, progressively decreased during observation up to five months post-infection.
Analysis of somatic mutations in V regions of Ig genes is important for understanding various biological processes. It is customary to estimate Ag selection on Ig genes by assessment of replacement (R) as opposed to silent (S) mutations in the complementary-determining regions and S as opposed to R mutations in the framework regions. In the past such an evaluation was performed using a binomial distribution model equation, which is inappropriate for Ig genes in which mutations have four different distribution possibilities (R and S mutations in the complementary-determining region and/or framework regions of the gene). In the present work, we propose a multinomial distribution model for assessment of Ag selection. Side-by-side application of multinomial and binomial models on 86 previously established Ig sequences disclosed 8 discrepancies, leading to opposite statistical conclusions about Ag selection. We suggest the use of the multinomial model for all future analysis of Ag selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.