Proton-transfer reactions in water are essential to chemistry and biology. Earlier studies reported on aqueous protontransfer mechanisms by observing light-triggered reactions of strong (photo)acids and weak bases. Similar studies on strong (photo)base−weak acid reactions would also be of interest because earlier theoretical works found evidence for mechanistic differences between aqueous H + and OH − transfer. In this work, we study the reaction of actinoquinol, a water-soluble strong photobase, with the water solvent and the weak acid succinimide. We find that in aqueous solutions containing succinimide, the proton-transfer reaction proceeds via two parallel and competing reaction channels. In the first channel, actinoquinol extracts a proton from water, after which the newly generated hydroxide ion is scavenged by succinimide. In the second channel, succinimide forms a hydrogen-bonded complex with actinoquinol and the proton is transferred directly. Interestingly, we do not observe proton conduction in water-separated actinoquinol−succinimide complexes, which makes the newly studied strong base−weak acid reaction essentially different from previously studied strong acid−weak base reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.