Shear induced alignment of elongated particles is studied experimentally and numerically. We show that shear alignment of ensembles of macroscopic particles is comparable even on a quantitative level to simple molecular systems, despite the completely different types of particle interactions. We demonstrate that for dry elongated grains the preferred orientation forms a small angle with the streamlines, independent of shear rate across three decades. For a given particle shape, this angle decreases with increasing aspect ratio of the particles. The shear-induced alignment results in a considerable reduction of the effective friction of the granular material.
The alignment, ordering, and rotation of elongated granular particles was studied in shear flow. The time evolution of the orientation of a large number of particles was monitored in laboratory experiments by particle tracking using optical imaging and x-ray computed tomography. The experiments were complemented by discrete element simulations. The particles develop an orientational order. In the steady state the time- and ensemble-averaged direction of the main axis of the particles encloses a small angle with the streamlines. This shear alignment angle is independent of the applied shear rate, and it decreases with increasing grain aspect ratio. At the grain level the steady state is characterized by a net rotation of the particles, as dictated by the shear flow. The distribution of particle rotational velocities was measured both in the steady state and also during the initial transients. The average rotation speed of particles with their long axis perpendicular to the shear alignment angle is larger, while shear aligned particles rotate slower. The ratio of this fast/slow rotation increases with particle aspect ratio. During the initial transient starting from an unaligned initial condition, particles having an orientation just beyond the shear alignment angle rotate opposite to the direction dictated by the shear flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.