The Mesozoic and Cenozoic exhumation and cooling history of Corsica is reconstructed by fission track (FT) data on basement and sedimentary rocks. Apatite ages are 105–16 Ma; zircon ages are 160–145 Ma. The Jurassic and Cretaceous ages show that parts of the Variscan basement escaped Alpine influence. The basement was thermally affected by rifting prior to Jurassic opening of the Ligurian‐Piedmont Ocean; then it cooled to near‐surface temperatures. In Paleocene‐Eocene times, subduction buried parts of the basement and overlying flysch to greater depth. In the Oligocene, both collapse of the nappe stack and rifting prior to opening of the Ligurian‐Provençal Basin affected the apatite FT system of the basement in different, partly overlapping areas causing a complex age pattern. The study shows that thorough analysis of FT data and thermal modeling allow to assign age populations to distinct cooling processes even when several thermotectonic events contributed to generate an intricate age pattern.
There is increasing demand for reliable, high-resolution vegetation maps covering large areas. Airborne laser scanning data is available for large areas with high resolution and supports automatic processing, therefore, it is well suited for habitat mapping. Lowland hay meadows are widespread habitat types in European grasslands, and also have one of the highest species richness. The objective of this study was to test the applicability of airborne laser scanning for vegetation mapping of different grasslands, including the Natura 2000 habitat type lowland hay meadows. Full waveform leaf-on and leaf-off point clouds were collected from a Natura 2000 site in Sopron, Hungary, covering OPEN ACCESS Remote Sens. 2014, 6 8057 several grasslands. The LIDAR data were processed to a set of rasters representing point attributes including reflectance, echo width, vegetation height, canopy openness, and surface roughness measures, and these were fused to a multi-band pseudo-image. Random forest machine learning was used for classifying this dataset. Habitat type, dominant plant species and other features of interest were noted in a set of 140 field plots. Two sets of categories were used: five classes focusing on meadow identification and the location of lowland hay meadows, and 10 classes, including eight different grassland vegetation categories. For five classes, an overall accuracy of 75% was reached, for 10 classes, this was 68%. The method delivers unprecedented fine resolution vegetation maps for management and ecological research. We conclude that high-resolution full-waveform LIDAR data can be used to detect grassland vegetation classes relevant for Natura 2000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.