Recognition of Hungarian conversational telephone speech is challenging due to the informal style and morphological richness of the language. Recurrent Neural Network Language Model (RNNLM) can provide remedy for the high perplexity of the task; however, twopass decoding introduces a considerable processing delay. In order to eliminate this delay we investigate approaches aiming at the complexity reduction of RNNLM, while preserving its accuracy. We compare the performance of conventional back-off n-gram language models (BNLM), BNLM approximation of RNNLMs (RNN-BNLM) and RNN n-grams in terms of perplexity and word error rate (WER). Morphological richness is often addressed by using statistically derived subwords -morphs -in the language models, hence our investigations are extended to morph-based models, as well. We found that using RNN-BNLMs 40% of the RNNLM perplexity reduction can be recovered, which is roughly equal to the performance of a RNN 4-gram model. Combining morph-based modeling and approximation of RNNLM, we were able to achieve 8% relative WER reduction and preserve real-time operation of our conversational telephone speech recognition system.
For morphologically rich languages, word embeddings provide less consistent semantic representations due to higher variance in word forms. Moreover, these languages often allow for less constrained word order, which further increases variance. For the highly agglutinative Hungarian, semantic accuracy of word embeddings measured on word analogy tasks drops by 50-75% compared to English. We observed that embeddings learn morphosyntax quite well instead. Therefore, we explore and evaluate several sub-word unit based embedding strategiescharacter n-grams, lemmatization provided by an NLP-pipeline, and segments obtained in unsupervised learning (morfessor)-to boost semantic consistency in Hungarian word vectors. The effect of changing embedding dimension and context window size have also been considered. Morphological analysis based lemmatization was found to be the best strategy to improve embeddings' semantic accuracy, whereas adding character n-grams was found consistently counterproductive in this regard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.