This review addresses the 100-year-old Hill equation (published in January 22, 1910), the first formula relating the result of a reversible association (e.g., concentration of a complex, magnitude of an effect) to the variable concentration of one of the associating substances (the other being present in a constant and relatively low concentration). In addition, the Hill equation was the first (and is the simplest) quantitative receptor model in pharmacology. Although the Hill equation is an empirical receptor model (its parameters have only physico-chemical meaning for a simple ligand binding reaction), it requires only minor a priori knowledge about the mechanism of action for the investigated agonist to reliably fit concentration-response curve data and to yield useful results (in contrast to most of the advanced receptor models). Thus, the Hill equation has remained an important tool for physiological and pharmacological investigations including drug discovery, moreover it serves as a theoretical basis for the development of new pharmacological models.
Contrasting data were reported regarding the effects of cannabinoids on anxiety and social behaviour in both animals and humans. The cognitive effects of cannabinoids and their interactions with the HPA-axis raise the possibility that cannabinoid effects are context but not behaviour specific. To assess this hypothesis, we submitted CB1 receptor knock-out (CB1-KO) and wild-type (WT) mice to tests, which involved similar behaviours, but the behavioural context was different. The elevated plus-maze test was performed under less and more anxiogenic conditions, i.e. under low and high light, respectively. We also compared the social behaviour of the two genotypes in the resident/intruder and social interaction tests. Both tests represent a social challenge and induce similar behaviours, but involve different contexts. The behaviour of CB1-KO and WT mice was similar under low light, but CB1 gene disruption increased anxiety-like behaviour under the high light condition. CB1 gene disruption promoted aggressive behaviour in the home-cage, whereas it inhibited social behaviour in the unfamiliar cage. Thus, the anxiogenic-like effect was restricted to the more stressful unfamiliar environment. These data suggest that the effects of CB1 gene disruption were context and not behaviour specific. Novelty stress resulted in higher ACTH levels in CB1-KOs than in WTs, which suggests that context dependency occurred in conjunction with an altered HPA axis function. The present data at least partly explain contrasting effects of cannabinoids in different contexts as well as in different species and strains that show differential stress responses and coping strategies.
Human dUTPase is essential in controlling relative cellular levels of dTTP/dUTP, both of which can be incorporated into DNA. The nuclear isoform of the enzyme has been proposed as a promising novel target for anticancer chemotherapeutic strategies. The recently determined three-dimensional structure of this protein in complex with an isosteric substrate analogue allowed in-depth structural characterization of the active site. However, fundamental steps of the dUTPase enzymatic cycle have not yet been revealed. This knowledge is indispensable for a functional understanding of the molecular mechanism and can also contribute to the design of potential antagonists. Here we present detailed pre-steady-state and steady-state kinetic investigations using a single tryptophan fluorophore engineered into the active site of human dUTPase. This sensor allowed distinction of the apoenzyme, enzyme-substrate, and enzymeproduct complexes. We show that the dUTP hydrolysis cycle consists of at least four distinct enzymatic steps: (i) fast substrate binding, (ii) isomerization of the enzyme-substrate complex into the catalytically competent conformation, (iii) a hydrolysis (chemical) step, and (iv) rapid, nonordered release of the products. Independent quenched-flow experiments indicate that the chemical step is the rate-limiting step of the enzymatic cycle. To follow the reaction in the quenched-flow, we devised a novel method to synthesize ␥-32 P-labeled dUTP. We also determined by indicator-based rapid kinetic assays that proton release is concomitant with the rate-limiting hydrolysis step. Our results led to a quantitative kinetic model of the human dUTPase catalytic cycle and to direct assessment of relative flexibilities of the C-terminal arm, critical for enzyme activity, in the enzyme-ligand complexes along the reaction pathway.dUTPase is the unique enzyme that specifically hydrolyzes the ␣- pyrophosphate bond of dUTP to yield dUMP and PP i(1). The enzyme is essential in maintaining DNA integrity in dividing cells (2, 3). Its activity is responsible for setting the physiological dUTP/dTTP concentration ratios (1:24) (4), thus preventing high rates of uracil incorporation into newly synthesized DNA. Although uracil in DNA is tolerated to a certain level by the base excision DNA repair mechanisms, higher levels of uracil in DNA trigger double-strand breaks and lead to cell death (5). Several lines of evidence show that up-regulated dUTPase is responsible for desensitizing tumors to drugs inhibiting the thymidylate synthase pathway, thus acting as an important survival factor for tumor cells (6, 7). Increased levels of the nuclear isoform of the enzyme correlate to worsened prognosis of several tumors, as revealed by detailed analysis of tissue samples (8, 9). dUTPase has therefore emerged as a high potential anticancer drug target, which possesses several additional, possibly advantageous features for drug design. Unlike most nucleotide-metabolizing enzymes, dUTPase is extremely specific to its substrate nucleotide, potenti...
Cannabinoids are known to modulate GABAergic and glutamatergic transmission in cortical areas, the former via CB1 and the latter via a novel receptor. Pharmacological data demonstrate that several widely used cannabinoid ligands bind to both receptors, which may explain the inconsistencies in their behavioural effects. Earlier we showed that the cannabinoid antagonist SR-141716A affected behaviour in both CB1 knockout and wild-type animals, and its effect (anxiolysis) was different from that of CB1 gene disruption (anxiogenesis). In the present experiments, we studied the effects of the CB1 antagonist AM-251, and the cannabinoid agonist WIN-55,212-2 in wild-type as well as in CB1 knockout mice. CB1 knockout mice showed higher scores of anxiety-like behaviour than the wild-type animals in the elevated plus-maze. Selective blockade of CB1 receptors by AM-251 (0.3, 1 and 3 mg/kg) increased anxiety-like behaviour dose-dependently in the wild-type mice but had no effect in the knockouts. In wild types, the cannabinoid agonist WIN-55,212-2 (1 and 3 mg/kg) caused a decrease in anxiety-like behaviour, which was abolished by the CB1-selective antagonist AM-251 (3 mg/kg). The same agonist did not change plus-maze behaviour in CB1 knockout animals. These data demonstrate at the behavioural level that AM-251 and, at low concentrations, WIN-55,212-2, are selective ligands of the CB1 cannabinoid receptor in mice. Our studies on the behavioural effects of the cannabinoid antagonist SR-141716A and the CB1 antagonist AM-251 show that the CB1 and the novel cannabinoid receptor mediate anxiolytic and anxiogenic effects, respectively. This suggests that agonists of the former, or antagonists of the latter, are promising new compounds in the pharmacotherapy of anxiety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.