The primary structure of the newly sequence analysed placental tissue protein 13 (PP13) was highly homologous to several members of the beta-galactoside-binding S-type lectin (galectin) family. By homology modelling, the three-dimensional structure of PP13 was built based on high-resolution crystal structures of homologues and also their characteristic 'jellyroll' fold was found in the case of PP13. Our model has been deposited in the Brookhaven Protein Data Bank. By multiple sequence alignment and structure-based secondary structure prediction, we underlined the structural similarity of PP13 with its homologues. The secondary structure of PP13 was identical with 'proto-type' galectins consisting of a five- and a six-stranded beta-sheet, joined by two alpha-helices, and galectins' highly conserved carbohydrate-recognition domain (CRD) was also present in PP13. Of the eight consensus residues in the CRD, four identical and three conservatively substituted were shared by PP13. By docking simulations PP13 possessed sugar-binding activity with highest affinity to N-acetyllactosamine and lactose typical of most galectins. All ligands were docked into the putative CRD of PP13. Based on several lines of evidence discussed in this paper demonstrating that PP13 is a novel galectin, PP13 was also designated galectin-13. These computational results provide some new insights into the possible role and importance of PP13 in various processes of the human body and can be of help in the initial steps of further functional research.
The stabilisation of magnesium actin filaments by phalloidin and jasplakinolide was studied using the method of differential scanning calorimetry. The results showed that actin could adapt three conformations in the presence of drugs. One conformation was adapted in direct interaction with the drug, while another conformation was identical to that observed in the absence of drugs. A third conformation was induced through allosteric inter-protomer interactions. The effect of both drugs propagated cooperatively along the actin filaments. The number of the cooperative units determined by using a quantitative model was larger for jasplakinolide (15 actin protomers) than for phalloidin (7 protomers).
In this work the effect of phalloidin and jasplakinolide on the dynamic properties and thermal stability of actin filaments was studied. Temperature dependent fluorescence resonance energy transfer measurements showed that filaments of Ca-actin became more rigid in the presence of phalloidin or jasplakinolide. Differential scanning calorimetric data implied that the stiffer filaments also had greater thermal stability in the presence of phalloidin or jasplakinolide. The fluorescence and calorimetric measurements provided evidences that the extent of stabilization by jasplakinolide was greater than that by phalloidin.
Infection of host cells by pathogenic microbes triggers signal transduction pathways leading to a multitude of host cell responses including actin cytoskeletal re-arrangements and transcriptional programs. The diarrheagenic pathogens Enteropathogenic E. coli (EPEC) and the related Enterohemorrhagic E. coli (EHEC) subvert the host-cell actin cytoskeleton to form attaching and effacing lesions on the surface of intestinal epithelial cells by injecting effector proteins via a type III secretion system. Here we use a MAL translocation assay to establish the effect of bacterial pathogens on host cell signaling to transcription factor activation. MAL is a cofactor of Serum response factor (SRF), a transcription factor with important roles in the regulation of the actin cytoskeleton. We show that EPEC induces nuclear accumulation of MAL-GFP. The translocated intimin receptor is essential for this process and phosphorylation of Tyrosine residues 454 and 474 is important. Using an expression screen we identify FLRT3, C22orf28 and TESK1 as novel activators of SRF. Importantly we demonstrate that ABRA (actin-binding Rho-activating protein, also known as STARS) is necessary for EPEC-induced nuclear accumulation of MAL and the novel SRF activator FLRT3, is a component of this pathway. We further demonstrate that ABRA is important for structural maintenance of EPEC pedestals. Our results uncover novel components in pathogen-activated cytoskeleton signalling to MAL activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.