Zeolite molecular sieves are used in industrial applications since more than 60 years, mainly as highly efficient adsorbents for separation processes in gas or liquid phase. Zeolite molecular sieves may be applied in powder form, preferably in static applications, but to a much larger extent as shaped material in both static and dynamic (flowing media) applications. Many shaping technologies for molecular sieves have been developed over the last decades, reflecting the different requirements for molecular sieves in different applications. This review deals with the influence of the applied zeolite synthesis and shaping methods for hydrophilic zeolite molecular sieves (procedures, materials, recipes) on the potential industrial applications; thereby considering powders, binder-containing shapes as well as binderless shapes (including compact structures such as honeycombs, multi-channel, and foam-like structures). Due to new challenges from the market, more specialized, tailor-made types of zeolite molecular sieves are required. Such a higher specialization can be achieved by applying new types of zeolites or zeolite-like materials, modified synthesis and/or post synthesis treatments, and by modified, to the needs of the application adjusted shaping processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.