In the high altitude areas of western Himalaya, barley is a crop of marginal, low input drought stressed environments. The landraces grown in these areas are favoured for their quality, both as grain and straw. However, area under the naked barley landraces, during the last three to four decades, has declined considerably and their ex situ and in situ conservation requires attention. Morphological and RAPD descriptors of a collection of 70 landraces from the higher Himalayan ranges of Uttaranchal state were used to analyse levels of genetic diversity. A wide range of variation was recorded for various morphological characters in univariate analysis. The multivariate analysis based on six quantitative traits distinguished accessions from different geographical areas in the region but failed to separate naked from covered barleys. Clustering based on qualitative traits, however, clearly distinguished naked and covered forms. RAPD profiles efficiently differentiated naked barleys from covered forms, but could not differentiate between oriental and occidental covered forms. A set of 11 predominant landraces were subjected to detailed population genetic analysis. More diversity was observed in covered barleys than the naked forms, both for morphological and RAPD markers. The low diversity in naked barley populations was attributed to either genetic drift or to a founder effect, while the high diversity in covered barley populations was attributed to their large-scale cultivation for animal feed and brewing purposes. Allelic combinations were not randomly distributed, as a geographic trend was closely related to covered and naked barleys. Since naked barleys are poorly represented in the national collections, a systematic collection from the entire region is suggested. The genetic differences between covered and naked barleys may be relevant to breeding programmes since the variability created through hybridisation between the contrasting forms could be exploited.
Wild Lens taxa are a reservoir of useful rare genes/alleles for widening the genetic base and synthesis of a new gene pool of lentil. To maximize and sustain lentil production, new gene sources are needed to be identified and incorporated into cultivated background. This needs a comprehensive approach to accumulate favourable alleles from distantly related germplasm for widening of the cultivated gene pool and would be the most appropriate strategy to solve the various problems associated with stressed crop production and plateaued yields. Furthermore, expansion of deeper understanding of lentil genomics along with extensive research undertaken in other crop species can provide suitable guidelines to cover the distribution of Lens genus and component gene pools for further remarkable progress in lentil genetic improvement. This review aims at the genus Lens distribution and gene pools, crop germplasm conserved in ex‐situ and in‐situ collection, wild species characterization and evaluation for useful traits of interest to solve production‐related problems, highlight useful gene sources present in different gene pools and the progress achieved for widening the genetic base of cultivated varieties of lentil through wide hybridization and exploring lentil genomics.
The development of transgressive phenotype in the segregating populations has been speculated to contribute to niche divergence of hybrid lineages, which occurs most frequently at larger genetic distances. Wild Lens species are considered to be more resistant against major biotic and abiotic stresses than that of the cultivated species. In the present study, we assessed the comparative agronomic performance of lentil (Lens culinaris subsp. culinaris) inter-sub-specific (L. culinaris subsp. orientalis) and interspecific (L. ervoides) derivatives, also discussed its probable basis of occurrence. The F3, F4, and F5 inter sub-specific and interspecific populations of ILL8006 × ILWL62 and ILL10829 × ILWL30, respectively revealed a substantial range of variation for majority of agro-morphological traits as reflected by the range, mean and coefficient of variation. A high level of fruitful heterosis was also observed in F3 and F4 progeny for important traits of interest. Phenotypic coefficient of variation (PCV) was higher in magnitude than genotypic coefficient of variation (GCV) in all generations for several quantitative characters. The results showed high heritability estimates for majority of traits in conjunction with low to high genetic advance in F3 and F4 generations. Further, F5 progeny of ILL10829 × ILWL30, manifested resistant disease reaction for fifteen recombinant inbred lines (RILs) against (Fusarium oxysporum f. sp. lentis (Vasd. Srin.) Gord.). The multilocation agronomic evaluation of both crosses showed better results for earliness, desirable seed yield and Fusarium wilt resistance under two agro-ecological regions of north-western India. These better performing recombinants of ILL8006 × ILWL62 and ILL10829 × ILWL30 can be advanced for further genetic improvement and developing high yielding disease resistant cultivars of lentil.
The use of untapped plant genetic resources of wheat (Triticum spp.) can enhance its productivity. In the present study, we characterized 22,416 accessions of three different species of wheat conserved in the Indian National Genebank using 23 qualitative and 12 quantitative traits to develop a core set. These accessions were highly diverse on the basis of range, coefficient of variation, and Shannon–Weaver diversity index. Initial grouping was done on the bases of species and origin, and thereafter, agromorphological data were used to develop core sets for each species group using the heuristic approach with PowerCore. Finally, a composite core set was constituted comprising 2,226 accessions, which included 1,779 accessions of bread wheat (T. aestivum L.), 394 of durum wheat [T. turgidum L. subsp. durum (Desf.) van Slageren], and 53 of emmer wheat [T. dicoccon Schrank; syn. T. turgidum L. subsp. dicoccon (Schrank) Thell]. The core set was validated under field conditions. Also, the coincidence rate of range (CR) (bread wheat, 85.78%; durum wheat, 87.52%; and emmer wheat, 95.34%) and variable rate of the coefficient of variation (VR) (bread wheat, 174.9%; durum wheat, 136.5%; and emmer wheat, 105.81%) were more than the threshold values of 80 and 100%, respectively. The phenotypic correlations among different traits attributable to coadapted gene complexes and total variation shown by principal components in the entire set were also mostly preserved in the core set. The composite wheat core and the trait‐specific germplasm sets identified would serve as valuable resources for global wheat improvement programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.