Purpose
The purpose of this paper is to investigate by means of finite element analysis (FEA), the effect of polyethylene insert thickness and implant material, under axial loading following TKA.
Design/methodology/approach
The 3D geometric model of bone was processed using the CT scan data by MIMICS (3matic Inc.), package. Implant components were 3D scanned and subsequently 3D modeled using ANSYS Spaceclaim and meshed in Hypermesh (Altair Hyperworks). The assembled, meshed bone-implant model was then input to ABAQUS for FE simulations, considering axial loading.
Findings
Polyethylene insert thickness was found to have very little or no significance (p>0.05) on the mechanical performance, namely, stress, strain and stress shielding of bone-implant system. Implant material was found to have a very significant effect (p<0.05) on the performance parameters and greatly reduced the high stress zones up to 60 percent on the tibial flange region and periprosthetic region of tibia.
Originality/value
Very few FEA studies have been done considering a full bone with heterogeneous material properties, to save computational time. Moreover, four different polyethylene insert thickness with a metal-backed and all-poly tibial tray was considered as the variables affecting the bone-implant system response, under static axial loading. The authors believe that considering a full bone shall lead to more precise outcomes, in terms of the response of bone-implant system, namely, stress, strains and stress shielding in the periprosthetic region, to loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.