This paper proposes a design of 0.15μm Monolithic Microwave Integrated Circuit (MMIC) power amplifier using GaAs pHEMT technology at 2.4 GHz which employs feed forward linearization technique to improve linearity. The amplifier is designed to operate in personal communication systems (PCS) frequency range using WIN semiconductor GaAs pHEMT technology. Single stage power amplifier is designed in lumped and distributed components with its layout. Linearity of PA is improved by Feed forward Linearization technique. To evaluate the performance of proposed linearized amplifier, Advanced Design system (ADS) tool is used. The designed circuit results with 13.65dBm output power at 1dB compression point (P1dB), 6dB power gain and maximum Power added efficiency of 16.4%. Linearity achieved by feed forward linearizer circuit with third order intermodulation suppression of 30dBc for the output power level of 8.217dBm and 1dB compression point at an input power of 15 dBm whereas 6 dBm for the Power amplifier without feed forward linearizer circuit. The designed Power amplifier system with feed forward linearizer had IMD3 suppression of 30dBc which is in appreciable range with improvement in 1dB compression point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.