Access to primary research data is vital for the advancement of science. To extend the data types supported by community repositories, we built a prototype Image Data Resource (IDR) that collects and integrates imaging data acquired across many different imaging modalities. IDR links data from several imaging modalities, including high-content screening, super-resolution and time-lapse microscopy, digital pathology, public genetic or chemical databases, and cell and tissue phenotypes expressed using controlled ontologies. Using this integration, IDR facilitates the analysis of gene networks and reveals functional interactions that are inaccessible to individual studies. To enable re-analysis, we also established a computational resource based on Jupyter notebooks that allows remote access to the entire IDR. IDR is also an open source platform that others can use to publish their own image data. Thus IDR provides both a novel on-line resource and a software infrastructure that promotes and extends publication and re-analysis of scientific image data.
Reliable microaneurysm detection in digital fundus images is still an open issue in medical image processing. We propose an ensemble-based framework to improve microaneurysm detection. Unlike the well-known approach of considering the output of multiple classifiers, we propose a combination of internal components of microaneurysm detectors, namely preprocessing methods and candidate extractors. We have evaluated our approach for microaneurysm detection in an online competition, where this algorithm is currently ranked as first, and also on two other databases. Since microaneurysm detection is decisive in diabetic retinopathy (DR) grading, we also tested the proposed method for this task on the publicly available Messidor database, where a promising AUC 0.90 ± 0.01 is achieved in a "DR/non-DR"-type classification based on the presence or absence of the microaneurysms.
In this paper, an ensemble-based method for the screening of diabetic
retinopathy (DR) is proposed. This approach is based on features extracted from
the output of several retinal image processing algorithms, such as image-level
(quality assessment, pre-screening, AM/FM), lesion-specific (microaneurysms,
exudates) and anatomical (macula, optic disc) components. The actual decision
about the presence of the disease is then made by an ensemble of machine
learning classifiers. We have tested our approach on the publicly available
Messidor database, where 90% sensitivity, 91% specificity and 90% accuracy and
0.989 AUC are achieved in a disease/no-disease setting. These results are
highly competitive in this field and suggest that retinal image processing is a
valid approach for automatic DR screening
High-throughput/high-content microscopy-based screens are powerful tools for functional genomics, yielding intracellular information down to the level of single-cells for thousands of genotypic conditions. However, accessing their data requires specialized knowledge and most often that data is no longer analyzed after initial publication. We describe Mineotaur (http://www.mineotaur.org), a open-source, downloadable web application that allows easy online sharing and interactive visualisation of large screen datasets, facilitating their dissemination and further analysis, and enhancing their impact.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0836-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.