In this paper we present the development of a DNA analysis system using a microfabricated channel device and a novel transmission imaging spectrograph which can be efficiently incorporated into a high throughput genomics facility for both sizing and sequencing of DNA fragments. The device contains 48 channels etched on a glass substrate. The channels are sealed with a flat glass plate which also provides a series of apertures for sample loading and contact with buffer reservoirs. Samples can be easily loaded in volumes up to 640 nL without band broadening because of an efficient electrokinetic stacking at the electrophoresis channel entrance. The system uses a dual laser excitation source and a highly sensitive charge‐coupled device (CCD) detector allowing for simultaneous detection of many fluorescent dyes. The sieving matrices for the separation of single‐stranded DNA fragments are polymerized in situ in denaturing buffer systems. Examples of separation of single‐stranded DNA fragments up to 500 bases in length are shown, including accurate sizing of GeneCalling® fragments, and sequencing samples prepared with a reduced amount of dye terminators. An increase in sample throughput has been achieved by color multiplexing.
Three-dimensional X-ray diffraction (3DXRD) is shown to be feasible at the I12 Joint Engineering, Environmental and Processing (JEEP) beamline of Diamond Light Source. As a demonstration, a microstructually simple low-carbon ferritic steel was studied in a highly textured and annealed state. A processing pipeline suited to this beamline was created, using software already established in the 3DXRD user community, enabling grain centre-of-mass positions, orientations and strain tensor elements to be determined. Orientations, with texture measurements independently validated from electron backscatter diffraction (EBSD) data, possessed a ∼0.1° uncertainty, comparable with other 3DXRD instruments. The spatial resolution was limited by the far-field detector pixel size; the average of the grain centre of mass position errors was determined as ±∼80 µm. An average per-grain error of ∼1 × 10−3 for the elastic strains was also measured; this could be reduced in future experiments by improving sample preparation, geometry calibration, data collection and analysis techniques. Application of 3DXRD onto I12 shows great potential, where its implementation is highly desirable due to the flexible, open architecture of the beamline. User-owned or designed sample environments can be used, thus 3DXRD could be applied to previously unexplored scientific areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.