Somatostatin-14 (SST) inhibits insulin and glucagon secretion by activating G protein-coupled somatostatin receptors (SSTRs), of which five isoforms exist (SSTR1-5). In mice, the effects on pancreatic β-cells are mediated by SSTR5, whereas α-cells express SSTR2. In both cell types, SSTR activation results in membrane hyperpolarization and suppression of exocytosis. Here, we examined the mechanisms by which SST inhibits secretion from human β- and α-cells and the SSTR isoforms mediating these effects. Quantitative PCR revealed high expression of SSTR2, with lower levels of SSTR1, SSTR3, and SSTR5, in human islets. Immunohistochemistry showed expression of SSTR2 in both β- and α-cells. SST application hyperpolarized human β-cells and inhibited action potential firing. The membrane hyperpolarization was unaffected by tolbutamide but antagonized by tertiapin-Q, a blocker of G protein-gated inwardly rectifying K⁺ channels (GIRK). The effect of SST was mimicked by an SSTR2-selective agonist, whereas a SSTR5 agonist was marginally effective. SST strongly (>70%) reduced depolarization-evoked exocytosis in both β- and α-cells. A slightly weaker inhibition was observed in both cell types after SSTR2 activation. SSTR3- and SSTR1-selective agonists moderately reduced the exocytotic responses in β- and α-cells, respectively, whereas SSTR4- and SSTR5-specific agonists were ineffective. SST also reduced voltage-gated P/Q-type Ca²⁺ currents in β-cells, but normalization of Ca²⁺ influx to control levels by prolonged depolarizations only partially restored exocytosis. We conclude that SST inhibits secretion from both human β- and α-cells by activating GIRK and suppressing electrical activity, reducing P/Q-type Ca²⁺ currents, and directly inhibiting exocytosis. These effects are mediated predominantly by SSTR2 in both cell types.
Cardiac troponins are released and cleared slowly after myocardial injury, complicating the diagnosis of early, and recurrent, acute myocardial infarction. Cardiac myosin-binding protein C (cMyC) is a similarly cardiac-restricted protein that may have different release/clearance kinetics. Using novel antibodies raised against the cardiac-specific N-terminus of cMyC, we used confocal microscopy, immunoblotting and immunoassay to document its location and release. In rodents, we demonstrate rapid release of cMyC using in vitro and in vivo models of acute myocardial infarction. In patients, with ST elevation myocardial infarction (STEMI, n = 20), undergoing therapeutic ablation of septal hypertrophy (TASH, n = 20) or having coronary artery bypass surgery (CABG, n = 20), serum was collected prospectively and frequently. cMyC appears in the serum as full-length and fragmented protein. Compared to cTnT measured using a contemporary high-sensitivity commercial assay, cMyC peaks earlier (STEMI, 9.3 ± 3.1 vs 11.8 ± 3.4 h, P < 0.007; TASH, 9.7 ± 1.4 vs 21.6 ± 1.4 h, P < 0.0001), accumulates more rapidly (during first 4 h after TASH, 25.8 ± 1.9 vs 4.0 ± 0.4 ng/L/min, P < 0.0001) and disappears more rapidly (post-CABG, decay half-time 5.5 ± 0.8 vs 22 ± 5 h, P < 0.0001). Our results demonstrate that following defined myocardial injury, the rise and fall in the serum of cMyC is more rapid than that of cTnT. We speculate that these characteristics could enable earlier diagnosis of myocardial infarction and reinfarction in suspected non-STEMI, a population not included in this early translational study.Electronic supplementary materialThe online version of this article (doi:10.1007/s00395-015-0478-5) contains supplementary material, which is available to authorized users.
Autoregulation ameliorates the effect of IABP on coronary flow. However, during hyperemia, IABP augments myocardial perfusion, principally due to a diastolic forward compression wave caused by balloon inflation, suggesting IABP would be of greatest benefit when microcirculatory reserve is exhausted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.