Flexibility, lightness and printability make organic solar cells (OSC) strong candidates to power low consumption devices such as envisioned for the Internet of Things. Such devices may be placed indoors, where light levels are well below typical outdoors level. Here, we demonstrate that maximizing the efficiency of OSC for indoor operation requires specific device optimization. In particular, minimizing the dark current of the solar cells is critical to enhance their efficiency under indoor light. Cells optimized for sunlight reach 6.2 % power conversion efficiency (PCE). However when measured under simulated indoor light conditions, the PCE is to 5.2 %. Cells optimized for indoor operation yield 7.6 % of PCE under indoor conditions. As a proof-of-concept, the solar cells are combined with fully printed super-capacitors to form a photo-rechargeable system. Such a system with a 0.475 cm 2 indoor-optimized solar cell achieved a total energy conversion and storage efficiency (ECSE) of 1.57 % under 1-sun, providing 26 mJ of energy and 4.1 mW of maximum power. Under
Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.