Soil erosion is a major threat to food security in rural areas of Africa. Field experiments were conducted from 2011 to 2014 in Majulai and Migambo villages with contrasting climatic conditions in Usambara Mountains, Tanzania. The aim was to investigate the effectiveness of mulching in reducing soil erosion and restoring soil fertility for productivity of maize (Zea mays) and beans (Phaseolus vulgaris) under miraba, a unique indigenous soil conservation measure in the area. Soil loss was significantly higher (p < 0·05) under miraba sole than under miraba with mulching, for example, 35 versus 20 and 13 versus 8 Mg ha À1 y À1 for Majulai and Migambo villages, respectively, in 2012. Soil fertility status was significantly higher (p < 0·05) under miraba with Tughutu mulching than under miraba sole, for example, 0·35 versus 0·25% total N, 37 versus 22 mg kg À1 P and 0·6 versus 0·2 cmol(+) kg À1 K for the Majulai village; and 0·46 versus 0·38 total N, 17·2 versus 10·2 mg kg À1 P and 0·50 versus 0·2 cmol(+) kg À1 K for the Migambo village. Maize and bean yields (Mg ha À1 ) were significantly higher (p < 0·05) under miraba with Tughutu mulching than under miraba sole, 2·0 versus 1·3 for maize and 0·9 versus 0·8 for beans in Majulai; and 3·8 versus 2·6 for maize and 1·0 versus 0·8 for beans in the Migambo village in 2012. This implies that Tughutu mulching is more effective in improving crop yield than Tithonia, although both could potentially protect the arable land from degradation caused by water erosion under miraba.
Soils formed from volcanic materials have high potential for agricultural production and support high human population densities. This study was carried out on soils developed from volcanic parent materials of Northern Province of Rwanda aiming largely on pedological characterization but to a certain extent on assessment of potentials of soils for production of major crops in the area. Three representative pedons namely Kinigi Pedon 1 (KNG-P1), Kinigi Pedon 2 (KNG-P2) and Gahunga Pedon 1 (GHNG-P1) were identified and described. Sixteen soil samples were collected from different pedogenic horizons and analyzed in the laboratory for physico-chemical properties. Pedons were classified using USDA Soil Taxonomy and FAO-WRB for Soil Resources. Potentials and limitations of the soils were also identified. Results show that soils were shallow to very deep and well drained. Topsoils were very dark coloured with colour values of ≤ 2 in all pedons. Texture was generally loamy with bulk densities of < 0.47 g/cm 3 in Pedons KNG-P1 and KNG-P2 while they ranged from 0.94 to 1.34 g/cm 3 in Pedon GHNG-P1. Topsoils were medium acid (KNG-P1, KNG-P2) and mildly alkaline (GHNG-P1), with high to very high OC ranging from 3.97 to 13.03%. CEC soil was high (> 32 cmol (+)/kg) in Pedons KNG-P1 and KNG-P2. Base saturation was low (< 30%) in Pedons KNG-P1 and KNG-P2 while it was high (> 50%) in Pedon GHNG-P1. pH NaF was > 9.5 in Pedons KNG-P1 and KNG-P2 reflecting exchange complex dominated by amorphous materials and/or humus complexes. Phosphorus retention capacity ranged from 6.25% to 99.58% and only Pedons KNG-P1 and KNG-P2 met the "andic properties" requirement of PRC ≥ 85%. Melanic index values indicated that these two pedons were characterized more by fulvic than humic acids. Nutrient imbalance with reference to basic cations was common in all studied soils, implying suboptimal nutrient uptake and toxicity. Fe 2 O 3 , SiO 2 and Al 2 O 3 were the dominant oxides in the studied soils. Degree of weathering of studied soils was low as indicated by their weathering indices. Using field and laboratory data, Pedons KNG-P1 and KNG-P2 classified as Andisols/Andosols and GHNG-P1 as Mollisols/Phaeozems. Land units represented by Pedons KNG-P1 and KNG-P2 were rated as marginally suitable while land unit represented by Pedon GHNG-P1 was rated as moderately suitable for the major crops of the area. Application of P fertilizers coupled with efficient placement was recommended to enhance P, and soil conservation should be underscored in study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.