Recently, the Third Generation Partnership Project (3GPP) has initiated to work in the Fifth Generation (5G) network to fulfill the security characteristics of IoT-based services. 3GPP has proposed the 5G handover key structure and framework in a recently published technical report. In this paper, we evaluate the handover authentication methodologies available in the literature and
identify the security vulnerabilities such as violation of global base-station, failure of key forward/backward secrecy, de-synchronization attack, and huge network congestion. Also, these protocols suffer from high bandwidth consumption that doesn’t suitable for energy efficient mobile devices in 5G network. To overcome these concerns, we introduce Secrecy and Efficiency Aware Inter-gNB (SEAI) handover Authentication and Key Agreement (AKA) protocol. The formal security
proof of the protocol is carried out by random oracle model to achieve the session key secrecy, confidentiality, and integrity. For the protocol correctness and achieve the mutual authentication property, simulation is performed using the AVISPA tool. Also, the informal security evaluation represents that the protocol defeats all the possible attacks and achieves the necessary security properties. Moreover, the performance evaluation of the earlier 5G handover protocols and proposed SEAI protocol is carried out. From the evaluations, the significant results are obtained based on computation, transmission, and communication overhead.
SummaryMachine‐type communication (MTC) is defined as an automatic aggregation, processing, and exchange of information among intelligent devices without humans intervention. With the development of immense embedded devices, MTC is emerging as the leading communication technology for a wide range of applications and services in the Internet of Things (IoT). For achieving the reliability and to fulfill the security requirements of IoT‐based applications, researchers have proposed some group‐based handover authentication and key agreement (AKA) protocols for mass MTCDs in LTE‐A networks. However, the realization of secure handover authentication for the group of MTCDs in IoT enabled LTE‐A network is an imminent issue. Whenever mass MTCDs enter into the coverage area of target base‐station simultaneously, the protocols incur high signaling congestion. In addition, the existing group‐based handover protocols suffer from the huge network overhead and numerous identified problems such as lack of key forward/backward secrecy, privacy‐preservation. Moreover, the protocols fail to avoid the key escrow problem and vulnerable to malicious attacks. To overcome these issues, we propose a secure and robust group‐based handover (SRGH) AKA protocol for mass MTCDs in LTE‐A network. The protocol establishes the group key update mechanism with forward/backward secrecy. The formal security proof demonstrates that the protocol achieves all the security properties including session key secrecy and data integrity. Furthermore, the formal verification using the AVISPA tool shows the correctness and informal analysis discusses the resistance from various security problems. The performance evaluation illustrates that the proposed protocol obtains substantial efficiency compared with the existing group‐based handover AKA protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.