Understanding the influence of processing operations such as drying/dehydration, canning, extrusion, high hydrostatic pressure, pulsed electric field, and ohmic heating on the phytochemicals of fruits, vegetables, and grains is important in retaining the health benefiting properties of these antioxidative compounds in processed food products. Most of the previous investigations in the literature on the antioxidants of fruits, vegetables, and grains have shown that food-processing operations reduced the antioxidants of the processed foods, which is also the usual consumer perception. However, in the last decade some articles in the literature reported that the evaluation of nutritional quality of processed fruits and vegetables not only depend on the quantity of vitamin C but should include analyses of other antioxidant phytochemicals and antioxidant activity. Thermal processing increased the total antioxidant activity of tomato and sweet corn. Most importantly, analysis also depends on the condition, type, and mechanism of antioxidant assays used. This review aims to provide concise information on the influence of various thermal and nonthermal food-processing operations on the stability and kinetics of health beneficial phenolic antioxidants of fruits, vegetables, and grains.
Foods with antioxidant capacity provide protection against cardio-vascular, certain forms of cancers, and Alzheimer's diseases caused by oxidative damages and contribute health benefits. The effect of extrusion cooking on the antioxidant capacity and color attributes of extruded products prepared from 3 selected formulations of purple potato and yellow pea flours using a co-rotating twin screw extruder were studied. Expansion ratios of the extruded products varied from 3.93 to 4.75. The total antioxidant capacities (TAC) of the extruded products, using DPPH assay, were 3769 to 4116 μg trolox equivalent/g dry weight sample and not significantly different (P > 0.05) from their respective raw formulations. The total phenolic contents (TP) of the extruded products varied from 2088 to 3766 μg of gallic acid equivalent/g dry weight sample and retained 73% to 83% of the TP from the raw formulations after extrusion. The total anthocyanins contents (TA) in the extrudates were 0.116 to 0.228 mg of malvidin-3-glucosides/g dry weight sample. Compared with their raw formulations, significant losses (60% to 70%) of the TA in the extruded products occurred due to extrusion cooking. Browning indices and color attributes such as brightness, chroma, and hue angle agreed with degradation of anthocyanins in the extruded products. However, extrusion cooking retained antioxidant capacities of the raw formulations in the extruded products either in their natural forms or degraded products with radical scavenging activity. This study demonstrated the potential for the production of puffed extruded food products with the improved antioxidant content from colored potatoes and pulse formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.