Today's medical implants communicate with each other over radio, typically using standards such as MICS. However, in order to reduce power consumption and improve datarates, we need to explore better standards. Ultra wide band radios (UWB) are known to be low power. While studies on UWB radios for on-body implants exists, no study exists which explains the effect of UWB for in-body medical implants. This paper shows that Ultra wideband (UWB) can be a feasible solution for in-body medical implants in certain cases. We present a model to compute path loss inside human body tissues, for frequencies in the UWB standard, a study that has not been done so far. Furthermore, we extend this model to include reflection losses. We will show from our study that UWB is an excellent option for short-distance inter-implant communication and combined in-and on-body communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.