In this research, we compared the anatomy and biomechanics of two species of mudskipper vs an aquatic sandgoby in view of terrestrial locomotion. Of particular interest was the relationship (if any) of pectoral fin movement with pelvic fin movement. We show that the pelvic fins of the terrestrial mudskippers studied herein, are retractable and move antagonistically with the pectoral fins. The pelvic fin of the sandgoby studied here is contrarily non-retractable and drags on any underlying substrate that the sandgoby tries to crawl across. We find that the pelvic and pectoral fin muscles of all fish are separated, but that the pectoral fins of the mudskipper species have bulkier radial muscles than the sandgoby. By coupling a detailed morphological investigation of pectoral-pelvic fins musculature with finite element simulations, we find that unlike sandgobies, the mudskipper species are able to mechanically push the pelvic fins downward as pectoral fins retract. This allows for an instant movement of pelvic fins during the pectoral fin backward stroke and as such the pelvic fins stabilize mudskippers through Stefan attachment of their pelvic fins. This mechanism seems to be efficient and energy saving and we hypothesize that the piston-like action might benefit pelvic–pectoral fin antagonism by facilitating a mechanical down-thrust. Our research on the biomechanics of tree-climbing fish provides ideas and greater potential for the development of energetically more efficient systems of ambulation in biomimetic robots.
This study was to determinte of development ovarian wader pari fish (Rasbora lateristriata) as part of the process of reproduction, which is the basic for information to R. lateristriata management. This study was done in october 2014 - april 2015 at Histology and Embryology Animal Laboratory of Gadjah Mada University. The object of the research was larva R. lateristriata with average weight of 0.02 grams. They were kept during 3 months. The result data of histology were analized and observed discussed descriptively. The results of observation showed that ovarian R. lateristriata indicated asincronous development patterns. The development of ovarian in the 1st month was at the chromatin nucleolar phase, while perinucleolar phase appeared in the 2nd and 3rd month.
During vertebrate development, the primary body axis elongates towards the posterior and is periodically divided into somites, which give rise to the vertebrae, skeletal muscles and dermis. Somites form periodically from anterior to posterior, and the anterior somites form in a more rapid cycle than the posterior somites. However, how this anteroposterior (AP) difference in somitogenesis is generated and how it contributes to the vertebrate body plan remain unclear. Here, we show that the AP difference in zebrafish somitogenesis originates from a variable overlapping segmentation period between one somite and the next. The AP difference is attributable to spatiotemporal inhibition of the clock gene her1 via retinoic acid (RA) regulation of the transcriptional repressor ripply1. RA depletion thus disrupts timely somite formation at the transition, eventually leading to the loss of one somite and the resultant cervical vertebra. Overall, our results indicate that RA regulation of the AP difference is crucial for proper linkage between the head and trunk in the vertebrate body plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.