<span lang="EN-GB">Latent Dirichlet Allocation (LDA) is a probability model for grouping hidden topics in documents by the number of predefined topics. If conducted incorrectly, determining the amount of K topics will result in limited word correlation with topics. Too large or too small number of K topics causes inaccuracies in grouping topics in the formation of training models. This study aims to determine the optimal number of corpus topics in the LDA method using the maximum likelihood and Minimum Description Length (MDL) approach. The experimental process uses Indonesian news articles with the number of documents at 25, 50, 90, and 600; in each document, the numbers of words are 3898, 7760, 13005, and 4365. The results show that the maximum likelihood and MDL approach result in the same number of optimal topics. The optimal number of topics is influenced by alpha and beta parameters. In addition, the number of documents does not affect the computation times but the number of words does. Computational times for each of those datasets are 2.9721, 6.49637, 13.2967, and 3.7152 seconds. The optimisation model has resulted in many LDA topics as a classification model. This experiment shows that the highest average accuracy is 61% with alpha 0.1 and beta 0.001.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.