BackgroundThe disease re-emergence threat from the major malaria vector in Sri Lanka, Anopheles culicifacies, is currently increasing. To predict malaria vector dynamics, knowledge of population genetics and gene flow is required, but this information is unavailable for Sri Lanka. This study was carried out to determine the population structure of An. culicifacies E in Sri Lanka.MethodsEight microsatellite markers were used to examine An. culicifacies E collected from six sites in Sri Lanka during 2010-2012. Standard population genetic tests and analyses, genetic differentiation, Hardy-Weinberg equilibrium, linkage disequilibrium, Bayesian cluster analysis, AMOVA, SAMOVA and isolation-by-distance were conducted using five polymorphic loci.ResultsFive microsatellite loci were highly polymorphic with high allelic richness. Hardy-Weinberg Equilibrium (HWE) was significantly rejected for four loci with positive FIS values in the pooled population (p < 0.0100). Three loci showed high deviations in all sites except Kataragama, which was in agreement with HWE for all loci except one locus (p < 0.0016). Observed heterozygosity was less than the expected values for all sites except Kataragama, where reported negative FIS values indicated a heterozygosity excess. Genetic differentiation was observed for all sampling site pairs and was not supported by the isolation by distance model. Bayesian clustering analysis identified the presence of three sympatric clusters (gene pools) in the studied population. Significant genetic differentiation was detected in cluster pairs with low gene flow and isolation by distance was not detected between clusters. Furthermore, the results suggested the presence of a barrier to gene flow that divided the populations into two parts with the central hill region of Sri Lanka as the dividing line.ConclusionsThree sympatric clusters were detected among An. culicifacies E specimens isolated in Sri Lanka. There was no effect of geographic distance on genetic differentiation and the central mountain ranges in Sri Lanka appeared to be a barrier to gene flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.