As the fight against SARS-CoV-2 remains undefeated despite available vaccines, continuous efforts to curtail this deadly and highly spreading virus remain a world priority. In this research, we have investigated the antiviral properties of the phytochemicals from Annona muricata (Sour Sop) as potential inhibitors of SARS-CoV-2 main protease (Mpro) and Spike Receptor Protein. Pharmacokinetic analyses such as in-silicoADME, drug-likeness, PASS prediction, oral-bioavailability and bioactivity were carried out to screen the phytochemicals, 9 out of the 131 ligands satisfied the screening. A molecular docking approach was used to obtain the binding energies of the 9 ligands, and the result showed that Roseoside (−7.50 kcal/mol) and Coreximine (−7.0 kcal/mol) displayed the best docking score and have predicted to have stable interactions with SARS-CoV-2 main protease and Spike Glycoprotein. Data from this study could be further explored in developing multi-target drugs against SARS-CoV-2.
Antibreast cancer activities of 131 phytochemicals from Annona muricata
(Soursop) were investigated against human placental aromatase (PDB ID: 3S7S), a prominent target receptor in breast cancer therapy using computer aided-drug design approach. An antibreast cancer drug (tamoxifen) was used for comparison. The result of this work flourishes caffeoquinic acid (−8.4 kcal/mol), roseoside (−8.3 kcal/mol), chlorogenic acid (−8.2 kcal/mol), feruloylglycoside (−8.1 kcal/mol), citroside A (−8.0 kcal/mol), and coreximine (−7.8 kcal/mol), as probable inhibitors of human placental aromatase. This is due to their excellent binding affinities (ΔG), coupled with outstanding druglike, absorption, distribution, metabolism, excretion, and toxicity profiles, bioavailability and oral-bioavailability properties, and the interactions of important residues with the active pocket of human placental aromatase. All the results obtained were similar to that of the standards tamoxifen (−8.0 kcal/mol) but could be better when optimized. Thus, lead optimization, molecular dynamics, and in vivo investigations are thereby recommended on the identified potent compounds in the quest of developing new therapeutic agents against breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.