In this chapter, an experimentally and numerically conducted investigation of the existence of high chaotic spiking in the dynamics of semiconductor lasers with AC-coupled optical feedback, the bifurcation diagram by feedback strength attenuation and the bias current as a control parameter was done. A semiconductor laser subjected to an external optical feedback can present a big change of dynamic behaviors, such as periodic and quasiperiodic oscillations, chaos, coherence collapse, and low-frequency fluctuations (LFF's) that degrade the laser characteristics. The chaotic instability is experimentally investigated on feedback strength as a control parameter, and the resulted dynamic is monostability. Finally, we indicated that the observed chaotic dynamic is a good candidate to hide information in order to investigate the resonance phenomena, which is important for chaos to encrypt data in optical communication, where data disappear when modulated in a chaos carrier. The aim of this chapter is to investigate the encryption area in the chaotic system when the applied frequency is 1-500 MHz, for satisfying the secure communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.