Wicking of wetting liquids into micro-patterns of posts with homogeneous triangular cross-section is studied in experiments and by numerical energy minimizations. To test for directional wicking we fabricated regular arrays of posts with various combinations of line fractions and aspect ratios using standard photolithography processes. In agreement with numerical energy minimizations of the liquid film morphology, we find spontaneous wicking in the experiments only for line fractions and aspect ratios where the homogeneous liquid film represents the state of lowest interfacial free energy and where no local energy minimum could be detected in our numerical energy minimizations. The numerical results further demonstrate that the stability of a certain morphology of the terminal meniscus controls the direction of wicking relative to the orientation of the triangular posts. The observed selectivity of spontaneous wicking in respect to the meniscus orientation can be exploited to build a micro-fluidic rectifier for partially wetting liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.