Background A sensitive method to investigate cellular stress and cytotoxicity is based on measuring mitochondrial membrane potential. Recently, JC-10, was developed to measure mitochondrial membrane potential in vitro and used as an indicator for cytotoxicity. Yet, JC-10 has never been used in vivo (whole organism). In normal cells, JC-10 concentrates in the mitochondrial matrix, where it forms red fluorescent aggregates. However, in apoptotic/necrotic cells, JC-10 diffuses out of the mitochondria, changes to monomeric form, and stains cells in green. Here, we aimed to develop and optimize a JC-10 assay to measure cytotoxicity in zebrafish embryo. We also investigated the effectiveness of JC-10 assay by comparing it to common cytotoxicity assays. Methods Zebrafish embryos were exposed to a toxic surfactant AEO-7 at no observed effect concentration (6.4 μg/L), and then cytotoxicity was measured using (i) JC-10 mitochondrial assay, (ii) acridine orange (AO), (iii) TUNEL assay, and (iv) measuring the level of Hsp70 by western blotting. Results As compared to the negative control, embryos treated with NOEC of AEO-7 did not show significant cytotoxicity when assessed by AO, TUNEL or western blotting. However, when JC-10 was used under the same experimental conditions, a significant increase of green:red fluorescent ratio signal was detected in the AEO-7 treated embryos, indicating mitochondrial damage and cellular cytotoxicity. Noteworthy, the observed green: red ratio increase was dose dependent, suggesting specificity of the JC-10 assay. Conclusion JC-10 is a sensitive in vivo method, thus, can be used as surrogate assay to measure cytotoxicity in whole zebrafish embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.