Abstract. Hutton (2016) argued that computational hydrology can only be a proper science if the hydrological community makes sure that hydrological model studies are executed and presented in a reproducible manner. We replied that to achieve this, hydrologists shouldn't ‘re-invent the water wheel’ but rather use existing technology from other fields (such as containers and ESMValTool) and open interfaces (such as BMI) to do their computational science (Hut, 2017). With this paper and the associated release of the eWaterCycle platform and software package1 we are putting our money where our mouth is and provide the hydrological community with a ‘FAIR by design’ platform to do our science. eWaterCycle is a platform that separates the experiment done on the model from the model code. In eWaterCycle hydrological models are accessed through a common interface (BMI) in Python and run inside of software containers. In this way all models are accessed in a similar manner facilitating easy switching of models, model comparison and model coupling. Currently the following models are available through eWaterCycle: PCR-GLOBWB 2.0, wflow, Hype, LISFLOOD, TopoFlex HBV, MARRMoT and WALRUS. While these models are written in different programming languages they can all be run and interacted with from the Jupyter notebook environment within eWaterCycle. Furthermore, the pre-processing of input data for these models has been streamlined by making use of ESMValTool. Forcing for the models available in eWaterCycle from well known datasets such as ERA5 can be generated with a single line of code. To illustrate the type of research that eWaterCycle facilitates this manuscript includes five case studies: from a simple ‘Hello World’ where only a hydrograph is generated to a complex coupling of models in different languages. In this manuscript we stipulate the design choices made in building eWaterCycle and provide all the technical details to understand and work with the platform. For system administrators who want to install eWaterCycle on their infrastructure we offer a separate installation guide. For computational hydologist who want to work with eWaterCycle we also provide a video explaining the platform from a users point of view. With the eWaterCycle platform we are providing the hydrological community with a platform to conduct their research fully compatible with the principles of Open Science as well as FAIR science.1available on Zenodo: doi.org/10.5281/zenodo.5119389
Abstract. Hutton et al. (2016) argued that computational hydrology can only be a proper science if the hydrological community makes sure that hydrological model studies are executed and presented in a reproducible manner. Hut, Drost and van de Giesen replied that to achieve this hydrologists should not “re-invent the water wheel” but rather use existing technology from other fields (such as containers and ESMValTool) and open interfaces (such as the Basic Model Interface, BMI) to do their computational science (Hut et al., 2017). With this paper and the associated release of the eWaterCycle platform and software package (available on Zenodo: https://doi.org/10.5281/zenodo.5119389, Verhoeven et al., 2022), we are putting our money where our mouth is and providing the hydrological community with a “FAIR by design” (FAIR meaning findable, accessible, interoperable, and reproducible) platform to do science. The eWaterCycle platform separates the experiments done on the model from the model code. In eWaterCycle, hydrological models are accessed through a common interface (BMI) in Python and run inside of software containers. In this way all models are accessed in a similar manner facilitating easy switching of models, model comparison and model coupling. Currently the following models and model suites are available through eWaterCycle: PCR-GLOBWB 2.0, wflow, Hype, LISFLOOD, MARRMoT, and WALRUS While these models are written in different programming languages they can all be run and interacted with from the Jupyter notebook environment within eWaterCycle. Furthermore, the pre-processing of input data for these models has been streamlined by making use of ESMValTool. Forcing for the models available in eWaterCycle from well-known datasets such as ERA5 can be generated with a single line of code. To illustrate the type of research that eWaterCycle facilitates, this paper includes five case studies: from a simple “hello world” where only a hydrograph is generated to a complex coupling of models in different languages. In this paper we stipulate the design choices made in building eWaterCycle and provide all the technical details to understand and work with the platform. For system administrators who want to install eWaterCycle on their infrastructure we offer a separate installation guide. For computational hydrologists that want to work with eWaterCycle we also provide a video explaining the platform from a user point of view (https://youtu.be/eE75dtIJ1lk, last access: 28 June 2022). With the eWaterCycle platform we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both Open Science and FAIR science.
The reproducibility of computational hydrology is gaining attention among hydrologists. Reproducibility requires open and reusable code and data, allowing users to verify results and process new datasets. The creation of input files for global hydrological models (GHMs) requires complex high-resolution gridded dataset processing, limiting the model’s reproducibility to groups with advanced programming skills. GlobWat is one of these GHMs, which was developed by the Food and Agriculture Organization (FAO) to assess irrigation water use. Although the GlobWat code and sample input data are available, the methods for pre-processing model inputs are not available. Here, we present a set of open-source Python and YAML scripts within the Earth System Model Evaluation Tool (ESMValTool) that provide a formalized technique for developing and processing GlobWat model weather inputs. We demonstrate the use of these scripts with the ERA5 and ERA-Interim datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF). To demonstrate the advantage of using these scripts, we ran the GlobWat model for 30 years for the entire world. The focus of the evaluation was on the Urmia Lake Basin in Iran. The validation of the model against the observed discharge in this basin showed that the combination of ERA5 and the De Bruin reference evaporation method yields the best GlobWat performance. Moreover, the scripts allowed us to examine the causes behind the differences in model outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.