BackgroundSodium butyrate (NaBu) is a short-chain fatty acid which serves as a histon deacetylase inhibitor and has received considerable interest as a possible regulator of cancer cell death. The regulatory effect of NaBu on cancer cell growth or death has yet to be illustrated in many cancers including breast cancer. This study is aimed to elucidate the possible effect of NaBu on regulation of breast cancer growth and apoptosis.MethodsThe cytotoxic effect of NaBu on the growth of breast cancer cells (MCF-7 and MDA-MB-468) and normal breast cells (MCF-10A) was determined using MTT assay. Annexin-V-FITC staining and PI staining were performed to detect apoptosis and cell cycle distribution using Flow cytometry, the level of mitochondrial membrane potential (Δψm), Reactive oxygen species (ROS)formation and caspase activity were determined accordingly.ResultsBased on our data, NaBu induced a dose and time-dependent cell toxicity in breast cancer cells which was related to the cell cycle arrest and induction of apoptosis. The impact of NaBu on MCF-10A cell toxicity, cell cycle distribution and apoptosis was inconsiderable. NaBu-elicited apoptosis was accompanied by the elevated level of ROS, increased caspase activity and reduced mitochondrial membrane potential (Δψm) in MCF-7 and MDA-MB-468 cells and with no effect on the above mentioned factors in MCF-10A cells.ConclusionsOur study provided insight in to the role of NaBu on the regulation of breast cancer cell growth and lighten up the pro-apoptotic activity of NaBu.
Abstract15-lipoxygenase is one of the key enzymes for the metabolism of unsaturated fatty acids that its manipulation has been proposed recently as a new molecular target for regulating cancer cell growth. Aberrant expression of 15-lipoxygenase enzyme seems to play an indicative role in the pathology of different cancer types, tumor progression, metastasis, or apoptosis. Based on the fact that breast cancer is one of the most common cancers that imposes a burden of mortality in women also, on the other hand, evidence in experimental models and human studies indicate the emerging role of the 15-lipoxygenase pathway in breast cancer pathogenesis, we present a review of recent findings related to the role of 15- lipoxygenase enzyme and metabolites in breast cancer growth, apoptosis, metastasis, and invasion as well as their local and circulating expression pattern in patients with breast cancer. Our review supports the emerging role of 15- lipoxygenase in molecular and cellular processes regulating breast tumor cell fate with both positive and negative effects.
IntroductionThe present study tried to provide insights into the expression pattern and diagnostic significance of the IGF-1 axis main mediators in three main primary bone tumor types with different degrees of severity.MethodsThe real-time qRT-PCR (to analyze IGF-1R gene expression), the immunohistochemistry (to measure IGF-1R protein), and the ELISA assay (to assess the circulating level of IGF-1, IGFBP-1, and IGFBP-3) were applied to confirm this hypothesis. A total number of 180 bone tissues (90 tumors and 90 noncancerous adjacent tissues) and 120 blood samples drained from 90 patients with bone tumors and 30 healthy controls were enrolled in the study. The association of insulin-like growth factor (IGF)-1 axis expression pattern with the patient’s clinical pathological characteristics and tumor aggressive features, the diagnostic and predictive values were assessed for all tumor groups.ResultsA significantly elevated level of IGF-1R gene and protein was detected in bone tumors compared to the noncancerous bone tissues that were prominent in osteosarcoma and Ewing sarcoma compared to the GCT group. The positive association of the IGF-1R gene and protein level with tumor grade, metastasis, and recurrence was detected in the osteosarcoma and Ewing sarcoma groups. The circulating level of IGF-1, IGFPB-1, and IGFBP-3 were increased in osteosarcoma and Ewing sarcoma and GCT groups that were correlated significantly to the tumor severity. The ability of the IGF-1 axis to discriminate between bone tumors also malignant and benign tumors was considerable.DiscussionIn summary, our data suggested that IGF-1R, IGF-1, IGFBP-1, and IGFBP-3 levels are associated with bone tumor malignancy, metastasis, and recurrence that might serve as biomarkers for osteosarcoma and Ewing sarcoma recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.