Parameter extraction of photovoltaic (PV) models based on measured current–voltage data plays an important role in the control, simulation, and optimization of PV systems. Despite the fact that various parameter extraction strategies have been dedicated to solving this problem, they may have certain drawbacks. In this paper, an effective hybrid optimization method based on adaptive rat swarm optimization (ARSO) and pattern search (PS) is presented for effectively and consistently extracting PV parameters. The proposed method employs the global search ability of ARSO and the local search ability of PS. The performance of the new algorithm is investigated using a set of benchmark test functions, and the results are compared with those of the standard RSO and some other methods from the literature. The extraction of parameters from several PV models, such as single‐diode, double‐diode, and PV modules, confirms the performance of the suggested method. Simulation results show that the proposed method surpasses other state‐of‐the‐art procedures in terms of accuracy, reliability, and convergence speed.
Concerns about fire risk reduction and rescue tactics have been raised in light of recent incidents involving flammable cladding systems and fast fire spread in high-rise buildings worldwide. Thus, governments, engineers, and building designers should prioritize fire safety. During a fire event, an emergency evacuation system is indispensable in large buildings, which guides evacuees to exit gates as fast as possible by dynamic and safe routes. Evacuation plans should evaluate whether paths inside the structures are appropriate for evacuations, considering the building’s electric power, electric controls, energy usage, and fire/smoke protection. On the other hand, the Internet of Things (IoT) is emerging as a catalyst for creating and optimizing the supply and consumption of intelligent services to achieve an efficient system. Smart buildings use IoT sensors for monitoring indoor environmental parameters, such as temperature, humidity, luminosity, and air quality. This research proposes a new way for a smart building fire evacuation and control system based on the IoT to direct individuals along an evacuation route during fire incidents efficiently. This research utilizes a hybrid nature-inspired optimization approach, Emperor Penguin Colony, and Particle Swarm Optimization (EPC-PSO). The EPC algorithm is regulated by the penguins’ body heat radiation and spiral-like movement inside their colony. The behavior of emperor penguins improves the PSO algorithm for sooner convergences. The method also uses a particle idea of PSO to update the penguins’ positions. Experimental results showed that the proposed method was executed accurately and effectively by cost, energy consumption, and execution time-related challenges to ensure minimum life and resource causalities. The method has decreased the execution time and cost by 10.41% and 25% compared to other algorithms. Moreover, to achieve a sustainable system, the proposed method has decreased energy consumption by 11.90% compared to other algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.