Parameter extraction of photovoltaic (PV) models based on measured current–voltage data plays an important role in the control, simulation, and optimization of PV systems. Despite the fact that various parameter extraction strategies have been dedicated to solving this problem, they may have certain drawbacks. In this paper, an effective hybrid optimization method based on adaptive rat swarm optimization (ARSO) and pattern search (PS) is presented for effectively and consistently extracting PV parameters. The proposed method employs the global search ability of ARSO and the local search ability of PS. The performance of the new algorithm is investigated using a set of benchmark test functions, and the results are compared with those of the standard RSO and some other methods from the literature. The extraction of parameters from several PV models, such as single‐diode, double‐diode, and PV modules, confirms the performance of the suggested method. Simulation results show that the proposed method surpasses other state‐of‐the‐art procedures in terms of accuracy, reliability, and convergence speed.
At present, the existing prediction algorithm of a port cargo throughput neglects the correction of the initial value of the cargo series data model, which leads to a large error in a port cargo throughput prediction. Therefore, a prediction algorithm of a port cargo throughput based on the ES-Markov model is designed. A decompose function is used to decompose the time series of a port cargo throughput, and the trend elements of a port cargo throughput are divided into long-term trend, seasonal trend, fluctuation trend, and irregular trend. In this study, the ES-Markov model is introduced, and the initial prediction is obtained by using the cubic exponential smoothing method, and the state transition matrix is obtained by the Markov principle. Based on the results of the time-series analysis and the ES-Markov model, the prediction algorithm of a port cargo throughput is designed. In the experimental design, the Elman neural network is used to construct an experimental sample data model. The monthly cargo throughput data of a certain port for eight months from May 2020 to December 2020 are collected and sorted according to the time series. The experimental results show that the prediction results of the proposed algorithm are closer to the actual value and the fluctuation of the prediction results is less than that of the reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.