Landslides are one of the most disastrous natural hazards in Indonesia, in terms of number of fatalities and economic losses. Therefore, Balai Litbang Sabo (BLS) has developed a Landslide Early Warning System (LEWS) for Indonesia, based on a Delft–FEWS (Flood Early Warning System) platform. This system utilizes daily precipitation data, a rainfall threshold method, and a Transient Rainfall Infiltration and Grid-based Regional Slope-stability model (TRIGRS) to predict landslide occurrences. For precipitation data, we use a combination of 1-day and 3-day cumulative observed and forecasted precipitation data, obtained from the Tropical Rainfall Measuring Mission (TRMM) and the Indonesian Meteorological Climatological and Geophysical Agency (BMKG). The TRIGRS model is used to simulate the slope stability in regions that are predicted to have a high probability of landslide occurrence. Our results show that the landslides, which occurred in Pacitan (28 November 2017) and Brebes regions (22 February 2018), could be detected by the LEWS from one to three days in advance. The TRIGRS model supports the warning signals issued by the LEWS, with a simulated factor of safety values lower than 1 in these locations. The ability of the Indonesian LEWS to detect landslide occurrences in Pacitan and Brebes indicates that the LEWS shows good potential to detect landslide occurrences a few days in advance. However, this system is still undergoing further developments for better landslide prediction.
Landslides are one of the most disastrous natural hazards that frequently occur in Indonesia. In 2017, Balai Sabo developed an Indonesia Landslide Early Warning System (ILEWS) by utilizing a single rainfall threshold for an entire nation, leading to inaccuracy in landslide predictions. The study aimed to improve the accuracy of the system by updating the rainfall threshold. We analyzed 420 landslide events in Java with the 1-day and 3-day effective antecedent rainfall for each landslide event. Rainfall data were obtained from the Global Precipitation Measurement (GPM), which is also used in the ILEWS. We propose four methods to derive the thresholds: the first is the existing threshold applied in the Balai Sabo ILEWS, the second and third use the average and minimum values of rainfall that trigger landslides, respectively, and the fourth uses the minimum value of rainfall that induces major landslides. We used receiver operating characteristic (ROC) analysis to evaluate the predictability of the rainfall thresholds. The fourth method showed the best results compared with the others, and this method provided a good prediction of landslide events with a low error value. The chosen threshold was then applied in the Balai Sabo-ILEWS.
An X-band radar was installed in 2014 at Merapi Museum, Yogyakarta, Indonesia, to monitor pyroclastic and rainfall events around Mt. Merapi. This research aims to perform a reliability analysis of the point extracted rainfall data from the aforementioned newly installed radar to improve the performance of the warning system in the future. The radar data was compared with the monitored rain gauge data from Balai Sabo and the IMERG satellite data from NASA and JAXA (The Integrated Multi-satellitE Retrievals for GPM), which had not been done before. All of the rainfall data was compared on an hourly interval. The comparisons were conducted based on 11 locations that correspond to the ground rainfall measurement stations. The locations of the rain gauges are spread around Mt. Merapi area. The point rainfall information was extracted from the radar data grid and the satellite data grid, which were compared with the rain gauge data. The data were then calibrated and adjusted up to the optimum state. Based on January 2017–March 2018 data, it was obtained that the optimum state has a NSF value of 0.41 and R2value of 0.56. As a result, it was determined that the radar can capture around 79% of the hourly rainfall occurrence around Mt. Merapi area during the chosen calibration period, in comparison with the rain gauge data. The radar was also able to capture nearby 40–50% of the heavy rainfall events that pose risks of lahar. In contrast, the radar data performance in detecting drizzling and light rain types were quite precise (55% of cases), although the satellite data could detect slightly better (60% of cases). These results indicate that the radar sensitivity in detecting the extreme rainfall events must receive higher priority in future developments, especially for applications to the existing Mt. Merapi lahar early warning systems.
<p>Landslides are one of the most disastrous natural hazards that frequently occur in Indonesia. Since 2017, Balai Sabo has developed an Indonesia Landslide Early Warning System (ILEWS) by utilizing a single rainfall threshold for an entire nation. This condition might lead to inaccuracy of the landslide prediction. Therefore, this study aims to improve the accuracy of the system by updating the rainfall threshold. This study focused on Java Island, where most of the landslides in Indonesia occur. We analyzed 420 landslide events with the one-day and three-day cumulative rainfall for each landslide event. Rainfall data were obtained from the Global Precipitation Measurement (GPM), which is also used in the ILEWS. We propose four methods to derive the thresholds, 1<sup>st</sup> is the existing threshold applied in the Balai Sabo-ILEWS, the 2<sup>nd</sup> and the 3<sup>rd</sup> use the average and minimum of rainfall that trigger landslides, respectively, and the 4<sup>th</sup> uses the minimum values of rainfall that induce major landslides. We employed the Receiver Operating Characteristic (ROC) analysis to evaluate the predictability of the rainfall thresholds. The 4<sup>th</sup> method shows the best result compared to the others, and this method provides a good prediction of landslide events with a low error value. The chosen threshold will be used as a new threshold in the Balai Sabo-ILEWS.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.