The processes involved in the conversion of triphenylene , C18H12, into cyclopent [hi] acephenanthrylene, C18H10, under flash vacuum pyrolytic conditions at 900-1100°C have been investigated by pyrolysing triphenylene-1,2- and -2,3-dicarboxylic anhydrides and diallyl triphenylene-1,3- and -1,4-dicarboxylates to give the corresponding didehydrotriphenylenes in the gas phase. These didehydro intermediates are converted into mixtures of cyclopent [hi] acephenanthrylene and triphenylene in different yields and proportions. Pyrolysis of 9,10-diethynylphenanthrene. C18H10, yields cyclopent [hi] acephenanthrylene in good yield. Pyrolysis of 1-nitrotriphenylene and allyl triphenylene-2-carboxylate to give the triphenylen-1-yl and -2-yl radicals leads to formation of the same products. Mechanisms involving radical rearrangements (C18H11 species) and benzyne-cyclopentadienylidenecarbene and ethyne-ethenylidene rearrangements (C18H10 species) are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.