Bacterial cellulose (BC) is recognized as a multifaceted, versatile biomaterial with abundant applications. Groups of microorganisms such as bacteria are accountable for BC synthesis through static or agitated fermentation processes in the presence of competent media. In comparison to static cultivation, agitated cultivation provides the maximum yield of the BC. A pure cellulose BC can positively interact with hydrophilic or hydrophobic biopolymers while being used in the biomedical domain. From the last two decades, the reinforcement of biopolymer-based biocomposites and its applicability with BC have increased in the research field. The harmony of hydrophobic biopolymers can be reduced due to the high moisture content of BC in comparison to hydrophilic biopolymers. Mechanical properties are the important parameters not only in producing green composite but also in dealing with tissue engineering, medical implants, and biofilm. The wide requisition of BC in medical as well as industrial fields has warranted the scaling up of the production of BC with added economy. This review provides a detailed overview of the production and properties of BC and several parameters affecting the production of BC and its biocomposites, elucidating their antimicrobial and antibiofilm efficacy with an insight to highlight their therapeutic potential.
Aims:The aim of this study is to determine the ability of two bioactive compounds, namely, eugenol and linalool, purified from leaves of Ocimum tenuiflorum for eradication of biofilm produced by Pseudomonas aeruginosa. Methods and Results: The phytoextract of O. tenuiflorum (KT), a common ethno-botanical plant of India, was purified through high-performance liquid chromatography and was analysed using ultraviolet (UV) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Eugenol and linalool were found to be the most active amongst all phytocompounds present in phytoextract and showed a significant reduction in the viability of sessile cells of P. aeruginosa and the minimum revival after withdrawal of phyto-challenge. They could bring about notable reduction in the protein and carbohydrate content of exopolysaccharide of biofilm. Eugenol and linalool could affect the synthesis of quorum sensing (QS) proteins like LasA and LasB as well as virulence factors such as pyocyanin, and rhamnolipids, which seriously hamper the formation of biofilm. The biofilm framework was extremely affected by the phytocompounds through the reduction of protein and carbohydrate content of extracellular polymeric substance (EPS). Another interesting found out was that they brought about maximum inhibition to the genomic DNA and RNA content. The studies were supported by in silico interaction between eugenol and linalool with the QS proteins. The antibiofilm efficacies of eugenol, linalool and phytoextract (KT) were further confirmed by microscopic studies with scanning electron microscopy (SEM), atomic force microscopy and fluorescence confocal microscopy microscopic studies. Conclusions: The phytocompounds are proved to be more effective than conventional antibiotics in inhibiting the biofilm forming sessile cells and can be used as a replacement for antibiotic. Significance and Impact of the Study: Pure eugenol extracted from common basil leaves can be used as a safe substitute for common antibiotic for treatment of chronic infections caused by P. aeruginosa. It will be cost effective, devoid of notable side effects and will not generate antibiotic resistance in host body.
The call to cater for the hungry is a worldwide problem in the 21st century. Food security is the utmost prime factor for the increasing demand for food. Awareness of human health when using chemical preservatives in food has increased, resulting in the use of alternative strategies for preserving food and enhancing its shelf-life. New preservatives along with novel preservation methods have been instigated, due to the intensified demand for extended shelf-life, along with prevention of food spoilage of dairy products. Bacteriocins are the group of ribosomally synthesized antimicrobial peptides; they possess a wide range of biological activities, having predominant antibacterial activity. The bacteriocins produced by the lactic acid bacteria (LAB) are considered to be of utmost importance, due to their association with the fermentation of food. In recent times among various groups of bacteriocins, leaderless and circular bacteriocins are gaining importance, due to their extensive application in industries. These groups of bacteriocins have been least studied as they possess peculiar structural and biosynthetic mechanisms. They chemically possess N-to-C terminal covalent bonds having a predominant peptide background. The stability of the bacteriocins is exhibited by the circular structure. Up till now, very few studies have been performed on the molecular mechanisms. The structural genes associated with the bacteriocins can be combined with the activity of various proteins which are association with secretion and maturation. Thus the stability of the bacteriocins can be used effectively in the preservation of food for a longer period of time. Bacteriocins are thermostable, pH-tolerant, and proteolytically active in nature, which make their usage convenient to the food industry. Several research studies are underway in the domain of biopreservation which can be implemented in food safety and food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.