Fake news classification is one of the most interesting problems that has attracted huge attention to the researchers of artificial intelligence, natural language processing, and machine learning (ML). Most of the current works on fake news detection are in the English language, and hence this has limited its widespread usability, especially outside the English literate population. Although there has been a growth in multilingual web content, fake news classification in low-resource languages is still a challenge due to the non-availability of an annotated corpus and tools. This article proposes an effective neural model based on the multilingual Bidirectional Encoder Representations from Transformer (BERT) for domain-agnostic multilingual fake news classification. Large varieties of experiments, including language-specific and domain-specific settings, are conducted. The proposed model achieves high accuracy in domain-specific and domain-agnostic experiments, and it also outperforms the current state-of-the-art models. We perform experiments on zero-shot settings to assess the effectiveness of language-agnostic feature transfer across different languages, showing encouraging results. Cross-domain transfer experiments are also performed to assess language-independent feature transfer of the model. We also offer a multilingual multidomain fake news detection dataset of five languages and seven different domains that could be useful for the research and development in resource-scarce scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.