Traditional molecular beacons, widely applied for detection of nucleic acids, have an intrinsic limitation on sensitivity, as one target molecule converts only one beacon molecule to its fluorescent form. Herein, we take advantage of the duplex-specific nuclease (DSN) to create a new signal-amplifying mechanism, duplex-specific nuclease signal amplification (DSNSA), to increase the detection sensitivity of molecular beacons (Taqman probes). DSN nuclease is employed to recycle the process of target-assisted digestion of Taqman probes, thus, resulting in a significant fluorescence signal amplification through which one target molecule cleaves thousands of probe molecules. We further demonstrate the efficiency of this DSNSA strategy for rapid direct quantification of multiple miRNAs in biological samples. Our experimental results showed a quantitative measurement of sequence-specific miRNAs with the detection limit in the femtomolar range, nearly 5 orders of magnitude lower than that of conventional molecular beacons. This amplification strategy also demonstrated a high selectivity for discriminating differences between miRNA family members. Considering the superior sensitivity and specificity, as well as the multiplex and simple-to-implement features, this method promises a great potential of becoming a routine tool for simultaneously quantitative analysis of multiple miRNAs in tissues or cells, and supplies valuable information for biomedical research and clinical early diagnosis.
We rationally engineered an elegant entropy-driven DNA nanomachine with three-dimensional track and applied it for intracellular miRNAs imaging. The proposed nanomachine is activated by target miRNA binding to drive a walking leg tethered to gold nanoparticle with a high density of DNA substrates. The autonomous and progressive walk on the DNA track via the entropy-driven catalytic reaction of intramolecular toehold-mediated strand migration leads to continuous disassembly of DNA substrates, accompanied by the recovery of fluorescence signal due to the specific release of a dye-labeled substrate from DNA track. Our nanomachine outperforms the conventional intermolecular reaction-based gold nanoparticle design in the context of an improved sensitivity and kinetics, attributed to the enhanced local effective concentrations of working DNA components from the proximity-induced intramolecular reaction. Moreover, the nanomachine was applied for miRNA imaging inside living cells.
Exosomes are membrane-enclosed phospholipid extracellular vesicles, which can act as mediators of intercellular communication. Although the original features endow tumor-derived exosomes great potential as biomarkers, efficient isolation and detection methods remain challenging. Here, we presented a two-stage microfluidic platform (ExoPCD-chip), which integrates on-chip isolation and in situ electrochemical analysis of exosomes from serum. To promote exosomes capture efficiency, an improved staggered Y-shaped micropillars mixing pattern was designed to create anisotropic flow without any surface modification. By combining magnetic enrichment based on specific phosphatidylserine-Tim4 protein recognition with a new signal transduction strategy in a chip for the first time, the proposed platform enables highly sensitive detection for CD63 positive exosomes as low as 4.39 × 10 3 particles/mL with a linear range spanning 5 orders of magnitude, which is substantially better than the existing methods. The reduced volume of sample (30 μL) and simple affinity method also make it ideal for rapid downstream analysis of complex biofluids within 3.5 h. As a proof-of-concept, we performed exosomes analysis in human serum and liver cancer patients can be well discriminated from the healthy controls by the ExoPCD-chip. These results demonstrate that this proposed ExoPCD-chip may serve as a comprehensive exosome analysis tool and potential noninvasive diagnostic platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.