Summary We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.
2 SUMMARYWe previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.
Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.
Anticancer uses of non-oncology drugs have occasionally been found, but such discoveries have been serendipitous. We sought to create a public resource containing the growth-inhibitory activity of 4,518 drugs tested across 578 human cancer cell lines. We used PRISM (profiling relative inhibition simultaneously in mixtures), a molecular barcoding method, to screen drugs against cell lines in pools. An unexpectedly large number of non-oncology drugs selectively inhibited subsets of cancer cell lines in a manner predictable from the molecular features of the cell lines. Our findings include compounds that killed by inducing phosphodiesterase 3A-Schlafen 12 complex formation, vanadium-containing compounds whose killing depended on the sulfate transporter SLC26A2, the alcohol dependence drug disulfiram, which killed cells with low expression of metallothioneins, and the anti-inflammatory drug tepoxalin, which killed via the multidrug resistance protein ATP-binding cassette subfamily B member 1 (ABCB1). The PRISM drug repurposing resource (https://depmap.org/repurposing) is a starting point to develop new oncology therapeutics, and more rarely, for potential direct clinical translation. NATURE CANCER | VOL 1 | FeBRUARY 2020 | 235-248 | www.nature.com/natcancer 235 ResouRce NATuRE CANCER the remaining compounds being either chemotherapeutics (2%) or targeted oncology agents (21%).Screening results. We employed a 2-stage screening strategy whereby drugs were first screened in triplicate at a single dose (2.5 µM); 1,448 drugs screening positives were then rescreened in triplicate in an eight-point dose-response ranging from 10 µM to 610 pM ( Fig. 1c and Supplementary Table 2). Interestingly, most active compounds (774 out of 1,448, 53%) were originally developed for non-oncology clinical indications (Fig. 1d). The primary and secondary screening datasets are available on the Cancer Dependency Map portal (https://depmap.org/repurposing) and figshare (https://doi.org/10.6084/m9.figshare.9393293; Extended Data Figs. 1-4). We compared the PRISM results to two gold standard datasets: GDSC (ref. 2 ) and CTD 2 (ref. 3 ). The three datasets shared 84 compounds tested on a median of 236 common cell lines, yielding 16,650 shared data points. The PRISM dataset had a similar degree of concordance to GDSC and CTD 2 (Pearson correlations of 0.60 and 0.61, respectively over all shared data points), as the GDSC and CTD 2 datasets had to each other (Pearson correlation 0.62) (Extended Data Fig. 5a). The three datasets remained similarly concordant when the analysis was restricted to data points showing evidence of anticancer activity (Extended Data Fig. 5b). We conclude that, despite differences in assay format, sources of compounds 5 and sources of cell lines 6 , the PRISM Repurposing dataset is similarly robust compared to existing pharmacogenomic datasets.At the level of individual compound dose-responses, we note that the PRISM Repurposing dataset tends to be somewhat noisier, with a higher standard error estimated from vehicle contr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.