Since variational mode decomposition (VMD) was proposed, it has been widely used in condition monitoring and fault diagnosis of mechanical equipment. However, the parameters K and α in the VMD algorithm need to be set before decomposition, which causes VMD to be unable to decompose adaptively and obtain the best result for signal decomposition. Therefore, this paper optimizes the VMD algorithm. On this basis, this paper also proposes a method of multi-domain feature extraction of signals and combines an extreme learning machine (ELM) to realize comprehensive and accurate fault diagnosis. First, VMD is optimized according to the improved grey wolf optimizer; second, the feature vectors of the time, frequency, and time-frequency domains are calculated, which are synthesized after dimensionality reduction; ultimately, the synthesized vectors are input into the ELM for training and classification. The experimental results show that the proposed method can decompose the signal adaptively, which produces the best decomposition parameters and results. Moreover, this method can extract the fault features of the signal more completely to realize accurate fault identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.