Salicylic acid (SA) is central for the defense of plants to pathogens and abiotic stress. SA is synthesized in chloroplasts from chorismic acid by an isochorismate synthase (ICS1); SA biosynthesis is negatively regulated by autoinhibitory feedback at ICS1. Genetic studies indicated that the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5) of Arabidopsis (Arabidopsis thaliana) is necessary for SA accumulation after biotic and abiotic stress, but so far it is not understood how EDS5 controls the biosynthesis of SA. Here, we show that EDS5 colocalizes with a marker of the chloroplast envelope and that EDS5 functions as a multidrug and toxin extrusion-like transporter in the export of SA from the chloroplast to the cytoplasm in Arabidopsis, where it controls the innate immune response. The location at the chloroplast envelope supports a model of the effect of EDS5 on SA biosynthesis: in the eds5 mutant, stress-induced SA is trapped in the chloroplast and inhibits its own accumulation by autoinhibitory feedback.
Plant architecture is influenced by the polar, cell-to-cell transport of auxin that is primarily provided and regulated by plasma membrane efflux catalysts of the PIN-FORMED and B family of ABC transporter (ABCB) classes. The latter were shown to require the functionality of the FK506 binding protein42 TWISTED DWARF1 (TWD1), although underlying mechanisms are unclear. By genetic manipulation of TWD1 expression, we show here that TWD1 affects shootward root auxin reflux and, thus, downstream developmental traits, such as epidermal twisting and gravitropism of the root. Using immunological assays, we demonstrate a predominant lateral, mainly outward-facing, plasma membrane location for TWD1 in the root epidermis characterized by the lateral marker ABC transporter G36/PLEIOTROPIC DRUG-RESISTANCE8/PENETRATION3. At these epidermal plasma membrane domains, TWD1 colocalizes with nonpolar ABCB1. In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root apoplast into the cytoplasm.
The phytohormone auxin is critical for plant growth and many developmental processes. Members of the P-glycoprotein (PGP/ABCB) subfamily of ATP-binding cassette (ABC) transporters have been shown to function in the polar movement of auxin by transporting auxin over the plasma membrane in both monocots and dicots. Here, we characterize a new Arabidopsis member of the ABCB subfamily, ABCB21/PGP21, a close homolog of ABCB4, for which conflicting transport directionalities have been reported. ABCB21 is strongly expressed in the abaxial side of cotyledons and in junctions of lateral organs in the aerial part, whereas in roots it is specifically expressed in pericycle cells. Membrane fractionation by sucrose density gradient centrifugation followed by Western blot showed that ABCB21 is a plasma membrane-localized ABC transporter. A transport assay with Arabidopsis protoplasts suggested that ABCB21 was involved in IAA transport in an outward direction, while naphthalene acetic acid (NAA) was a less preferable substrate for ABCB21. Further functional analysis of ABCB21 using yeast import and export assays showed that ABCB21 mediates the 1-N-naphthylphthalamic acid (NPA)-sensitive translocation of auxin in an inward direction when the cytoplasmic IAA concentration is low, whereas this transporter mediates outward transport under high internal IAA. An increase in the cytoplasmic IAA concentration by pre-loading of IAA into yeast cells abolished the IAA uptake activity by ABCB21 as well as ABCB4. These findings suggest that ABCB21 functions as a facultative importer/exporter controlling auxin concentrations in plant cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.