In order to improve the performance and change the current situation of the cost minimization model widely used in the cold chain logistics distribution process, a multi-objective optimization model based on cost, carbon emissions and customer satisfaction is proposed. Considering the characteristic of this proposed optimization model, we design an improved ant colony algorithm with a multi-objective heuristic function to solve it, termed as ACOMO. Experimental results show that the proposed ACOMO can effectively solve the vehicle routing problem of the multi-objective optimization model, and outperforms the classic ant colony algorithms, resulting in more Pareto optimal solutions. It offers an environmentally friendly distribution solution for the problem. Specifically, the distribution path obtained by the improved ant colony algorithm manages to achieve the above multiple goals, including reduction of distribution costs and carbon emissions, and improvement of customer satisfaction. In addition, compared with a single-target model that only provides one single distribution route to cost minimization, multi-objective optimization can provide a variety of distribution route options for logistics companies in practice. Finally, through the sensitivity analysis of temperature changes and cargo damage coefficients, the proposed system successfully provides reference for the optimization of the path of cold chain logistics enterprises, and promotes logistics enterprises to effectively arrange their work and to be more socially responsible. INDEX TERMS Cold chain logistics, path optimization, multi-objective optimization, carbon constraints, customer satisfaction.
Overlapping coalition formation is a very active research field in multi-agent systems (MAS). In overlapping coalition, each agent can participate in different coalitions corresponding to multiple tasks at the same time. As each agent has limited resources, resource conflicts will occur. In order to resolve resource conflicts, we develop an improved encoding revision algorithm in this paper which can revise an invalid two-dimensional binary encoding into a valid one by checking the encoding for each row. To verify the effectiveness of the algorithm, differential evolution was used as the experimental platform and compared with Zhang et al. The experimental results show that the algorithm in this paper is superior to Zhang et al. in both solution quality and encoding revision time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.