Background Artificial intelligence (AI) has been extensively used in a range of medical fields to promote therapeutic development. The development of diverse AI techniques has also contributed to early detections, disease diagnoses, and referral management. However, concerns about the value of advanced AI in disease diagnosis have been raised by health care professionals, medical service providers, and health policy decision makers. Objective This review aimed to systematically examine the literature, in particular, focusing on the performance comparison between advanced AI and human clinicians to provide an up-to-date summary regarding the extent of the application of AI to disease diagnoses. By doing so, this review discussed the relationship between the current advanced AI development and clinicians with respect to disease diagnosis and thus therapeutic development in the long run. Methods We systematically searched articles published between January 2000 and March 2019 following the Preferred Reporting Items for Systematic reviews and Meta-Analysis in the following databases: Scopus, PubMed, CINAHL, Web of Science, and the Cochrane Library. According to the preset inclusion and exclusion criteria, only articles comparing the medical performance between advanced AI and human experts were considered. Results A total of 9 articles were identified. A convolutional neural network was the commonly applied advanced AI technology. Owing to the variation in medical fields, there is a distinction between individual studies in terms of classification, labeling, training process, dataset size, and algorithm validation of AI. Performance indices reported in articles included diagnostic accuracy, weighted errors, false-positive rate, sensitivity, specificity, and the area under the receiver operating characteristic curve. The results showed that the performance of AI was at par with that of clinicians and exceeded that of clinicians with less experience. Conclusions Current AI development has a diagnostic performance that is comparable with medical experts, especially in image recognition-related fields. Further studies can be extended to other types of medical imaging such as magnetic resonance imaging and other medical practices unrelated to images. With the continued development of AI-assisted technologies, the clinical implications underpinned by clinicians’ experience and guided by patient-centered health care principle should be constantly considered in future AI-related and other technology-based medical research.
Background Gestational diabetes mellitus (GDM) can cause adverse consequences to both mothers and their newborns. However, pregnant women living in low- and middle-income areas or countries often fail to receive early clinical interventions at local medical facilities due to restricted availability of GDM diagnosis. The outstanding performance of artificial intelligence (AI) in disease diagnosis in previous studies demonstrates its promising applications in GDM diagnosis. Objective This study aims to investigate the implementation of a well-performing AI algorithm in GDM diagnosis in a setting, which requires fewer medical equipment and staff and to establish an app based on the AI algorithm. This study also explores possible progress if our app is widely used. Methods An AI model that included 9 algorithms was trained on 12,304 pregnant outpatients with their consent who received a test for GDM in the obstetrics and gynecology department of the First Affiliated Hospital of Jinan University, a local hospital in South China, between November 2010 and October 2017. GDM was diagnosed according to American Diabetes Association (ADA) 2011 diagnostic criteria. Age and fasting blood glucose were chosen as critical parameters. For validation, we performed k-fold cross-validation (k=5) for the internal dataset and an external validation dataset that included 1655 cases from the Prince of Wales Hospital, the affiliated teaching hospital of the Chinese University of Hong Kong, a non-local hospital. Accuracy, sensitivity, and other criteria were calculated for each algorithm. Results The areas under the receiver operating characteristic curve (AUROC) of external validation dataset for support vector machine (SVM), random forest, AdaBoost, k-nearest neighbors (kNN), naive Bayes (NB), decision tree, logistic regression (LR), eXtreme gradient boosting (XGBoost), and gradient boosting decision tree (GBDT) were 0.780, 0.657, 0.736, 0.669, 0.774, 0.614, 0.769, 0.742, and 0.757, respectively. SVM also retained high performance in other criteria. The specificity for SVM retained 100% in the external validation set with an accuracy of 88.7%. Conclusions Our prospective and multicenter study is the first clinical study that supports the GDM diagnosis for pregnant women in resource-limited areas, using only fasting blood glucose value, patients’ age, and a smartphone connected to the internet. Our study proved that SVM can achieve accurate diagnosis with less operation cost and higher efficacy. Our study (referred to as GDM-AI study, ie, the study of AI-based diagnosis of GDM) also shows our app has a promising future in improving the quality of maternal health for pregnant women, precision medicine, and long-distance medical care. We recommend future work should expand the dataset scope and replicate the process to validate the performance of the AI algorithms.
Artificial intelligence (AI) has been widely used in medical field, facilitating the development of medical services. This passage illustrates basic principles of AI application in medicine, summarizes some outstanding achievements of such application and discusses its merits and drawbacks. The passage is also an attempt to look into the future of AI in medical field. Keywords Artificial intelligence; disease diagnosis; treatment; deep-learning Artificial Intelligence in Disease Diagnosis and Medical TreatmentArtificial Intelligence (AI) is a field of program-based computer science that can simulate human's mental processes and intelligent activity and enable machines to solve problems with knowledge. In the information age, AI is widely used in the medical field and can promote medical development. AI may optimize the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical errors, and improve subject enrollment into clinical trials. [1] There are currently two common methods in AI. An expert system is a computer system that generates predictions under supervision and can outperform human experts in terms of decision-making. It consists of two interdependent subsystems: a knowledge base and an inference engine. While the knowledge base contains accumulated experience, the inference engine (a reasoning system) can access the current state of the knowledge base and supplement it with new knowledge. Expert systems can create critical information for the system more explicit, make maintenance easy and increase the speed of prototyping [2]. However, expert systems are limited in terms of knowledge acquisition and performance.The second method is machine learning. This is the core of AI and is a fundamental approach to making computers intelligent. Machine learning requires huge amounts of data for training. This improves their performance step by step during the process. One of the focuses underlying machine learning is parameter screening. Too many parameters can lead to inaccurate entries and calculations. Therefore, reducing the number of parameters can improve the efficiency of AI, but it may also lower its accuracy. However, one of the key objectives of AI is to outperform people via selfstudy in challenging fields without any prior knowledge.Google's DeepMind was recently updated with new version of AlphaGo Zero, which started from scratch by relying completely on itself for intensive study and selftraining without learning from any chess manual. It then defeated AlphaGo that had studied a large number of chess manuals before by 100 to 0. The study ushered in a new era of AI that it is free from human cognition and can discover new knowledge and strategies itself [3]. In China, a robot designed by iFlytek. passed the 2017 Licensing Examination of Medical Practitioners. As a result, it will assist doctors in medical diagnosis and treatment.In machine learning, neural network is an algorithm. The network acquires knowledge through many examples in med...
BACKGROUND Gestational diabetes mellitus (GDM) can cause adverse consequences to both mothers and their newborns. However, pregnant women living in low- and middle-income areas or countries often fail to receive early clinical interventions at local medical facilities due to restricted availability of GDM diagnosis. The outstanding performance of artificial intelligence (AI) in disease diagnosis in previous studies demonstrates its promising applications in GDM diagnosis. OBJECTIVE This study aims to investigate the implementation of a well-performing AI algorithm in GDM diagnosis in a setting, which requires fewer medical equipment and staff and to establish an app based on the AI algorithm. This study also explores possible progress if our app is widely used. METHODS An AI model that included 9 algorithms was trained on 12,304 pregnant outpatients with their consent who received a test for GDM in the obstetrics and gynecology department of the First Affiliated Hospital of Jinan University, a local hospital in South China, between November 2010 and October 2017. GDM was diagnosed according to American Diabetes Association (ADA) 2011 diagnostic criteria. Age and fasting blood glucose were chosen as critical parameters. For validation, we performed k-fold cross-validation (k=5) for the internal dataset and an external validation dataset that included 1655 cases from the Prince of Wales Hospital, the affiliated teaching hospital of the Chinese University of Hong Kong, a non-local hospital. Accuracy, sensitivity, and other criteria were calculated for each algorithm. RESULTS The areas under the receiver operating characteristic curve (AUROC) of external validation dataset for support vector machine (SVM), random forest, AdaBoost, k-nearest neighbors (kNN), naive Bayes (NB), decision tree, logistic regression (LR), eXtreme gradient boosting (XGBoost), and gradient boosting decision tree (GBDT) were 0.780, 0.657, 0.736, 0.669, 0.774, 0.614, 0.769, 0.742, and 0.757, respectively. SVM also retained high performance in other criteria. The specificity for SVM retained 100% in the external validation set with an accuracy of 88.7%. CONCLUSIONS Our prospective and multicenter study is the first clinical study that supports the GDM diagnosis for pregnant women in resource-limited areas, using only fasting blood glucose value, patients’ age, and a smartphone connected to the internet. Our study proved that SVM can achieve accurate diagnosis with less operation cost and higher efficacy. Our study (referred to as GDM-AI study, ie, the study of AI-based diagnosis of GDM) also shows our app has a promising future in improving the quality of maternal health for pregnant women, precision medicine, and long-distance medical care. We recommend future work should expand the dataset scope and replicate the process to validate the performance of the AI algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.