Perivascular mural cells including vascular smooth cells (VSMCs) and pericytes are integral components of the vascular system. In the central nervous system (CNS), pericytes are also known as the guardian of the blood-brain barrier, blood-spinal cord barrier and blood-retinal barrier, and play key roles in maintaining cerebrovascular and neuronal functions. However, the functional difference between CNS and peripheral pericytes has not been resolved at the genetic and molecular levels. Hence, the generation of reliable CNS pericyte-specific models and genetic tools remains very challenging. Here, we report a new CNS pericyte marker in mice. This cation-transporting ATPase 13A5 (Atp13a5) marker is highly specific to the pericytes in brain, spinal cord and retina. We generated a transgenic model with a knock-in tdTomato reporter and Cre recombinase. The tdTomato reporter reliably labels the CNS pericytes, but not found in any other CNS cell types including closely related VSMCs, or in peripheral organs. More importantly, Atp13a5 is turned on at embryonic day E15, suggesting brain pericytes are shaped by the developing neural environment. We hope that the new tools will allow us to further explore the heterogeneity of pericytes and achieve a better understanding of CNS pericytes in health and diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.