Functionality of synthetic and natural antioxidants on dough rheology for preparation of bread and cookies was studied. Four antioxidants viz. butylated hydroxytoluene, dl-alpha-tocopherolacetate, malic acid and soy lecithin were added on shortening weight basis, with BHT and dl-alpha-tocopherolacetate added at levels of 200, 400, 600, and 800 ppm and malic acid and soy lecithin added at levels of 0.25, 0.50, 0.75, and 1.00 kg/100 kg shortening. Significant variations were recorded in Farinograph and Amylograph characteristics upon addition of antioxidants. These antioxidants even at the minimum concentrations improved dough handling and machinability. In comparison with control, BHT at 200 ppm, dl-alpha-tocopherolacetate at 800 ppm, malic acid at 1.00 kg/100 kg shortening and soy lecithin at 0.75 and 1.00 kg/100 kg shortening level modified the rheological properties and visco-elastic behavior of dough.
Expansion of dough and hence breadmaking performance is postulated to depend on a dual mechanism for stabilization of inflating gas bubbles. Two flours were used in this study, one from the wheat variety Jagger (Jagger) and the other from a composite of soft wheat varieties (soft). The primary stabilizing mechanism is due to the gluten-starch matrix surrounding the bubble. The secondary mechanism operates when gas bubbles come into close contact during later proofing and early baking. When discontinuities occur in the gluten-starch matrix surrounding gas bubbles, thin liquid lamellae stabilized by adsorbed surface active compounds, provide a secondary stabilization.A key parameter in the primary stabilizing dough film is thought to be the property of strain hardening. Jagger flour gave higher test-bake loaf volume than soft wheat flour and higher strain hardening index for dough. Rheological properties of doughs were varied by addition of protein fractions prepared by pH fractionation. Fractions were characterized by SE-HPLC and MALLS. The molecular weight distribution (MWD) of fractions progressively shifted to higher values as the pH of fractionations decreased. Mixograph peak development time paralleled the MWD. However, the strain hardening index and the test-bake loaf volume increased with increasing MWD up to a point (optimum), after which they declined. At a given strain rate the behavior at the optimum appeared to result from slippage of the maximum number of statistical segments between entanglements, without disrupting the entangled network of polymeric proteins. Shift of MWD to MW higher than the optimum results in a stronger network with reduced slippage through entanglement nodes, whereas a shift to lower MWs will decrease the strength of the network due to less number of entanglements per chain.In order to study the secondary stabilizing mechanism, different lipid fractions were added incrementally to the defatted flours. No effects were observed on the rheological properties of the dough. However, large effects on the loaf volume were measured. The additives used were the total flour lipid and its polar and non polar fractions and the fatty acids palmitic, linoleic and myristic. Polar lipids and palmitic acid had positive or little effect on loaf volume respectively. Non polar lipid, linoleic and myristic acids had negative effects on loaf volume. AbstractExpansion of dough and hence breadmaking performance is postulated to depend on a dual mechanism for stabilization of inflating gas bubbles. Two flours were used in this study, one from the wheat variety Jagger (Jagger) and the other from a composite of soft wheat varieties (soft). The primary stabilizing mechanism is due to the gluten-starch matrix surrounding the bubble. The secondary mechanism operates when gas bubbles come into close contact during later proofing and early baking. When discontinuities occur in the gluten-starch matrix surrounding gas bubbles, thin liquid lamellae stabilized by adsorbed surface active compounds, provi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.