Two purple nonsulfur bacteria (PNSB) strains, Rhodobium marinum NW16 and Rhodobacter sphaeroides KMS24 were investigated for their potential to remove heavy metals (HMs) from contaminated shrimp pond water. Tolerance of both PNSB strains growing with both microaerobic-light and aerobic-dark conditions, based on their minimum inhibitory concentrations, was in the order of Cu 2+ > Zn 2+ > Cd 2+ (Pb precipitation occurred at 0.34 mM). Results from a scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDX) indicated that Cu 2+ and Zn 2+ altered the cellular morphology of both strains and accumulated HMs were found in their cells. The highest amounts of both cations were found in their cell walls followed by the cytoplasm and cell membrane. Using the highest concentrations (mM) of HMs found in shrimp pond of 0.0067 Cd 2+ , 0.54 Cu 2+ , 0.30 Pb 2+ , 0.89 Zn 2+ and 3% NaCl under both incubating conditions exopolymeric substances (EPS) produced by both strains showed a greater removal of all HMs (average percentages; 90.52-97.29) than their cells (average percentages; 14.02-75.03).
In order to remove heavy metals (HMs) from contaminated shrimp pond at the highest concentrations found of; 0.75 mg/l Cd 2? , 62.63 mg/l Pb 2? , 34.60 mg/l Cu 2? and 58.50 mg/l Zn 2? , two strains of purple nonsulfur bacteria isolated from shrimp ponds (NW16 and KMS24) were investigated for their ability to immobilize HMs in 3% NaCl in both microaerobic-light and aerobic-dark conditions. Based on metabolic inhibition and metabolic-dependent studies, it was concluded that both strains removed HMs using biosorption and also bioaccumulation. The efficiency of removal by both strains with both incubating conditions tested was in the order of lead (Pb) [ copper (Cu) [ zinc (Zn) [ cadmium (Cd). Optimal conditions for removal of HMs by strain NW16 were; cells in the log phase at 4.5 mg DCW/ml, pH 6.0, and 30°C for 30 min. With microaerobic-light conditions, the relative percent removal of HMs was: Pb, 83; Cu, 59; Zn, 39; Cd, 23 and slightly more with the aerobic-dark conditions (Pb, 90; Cu, 69; Zn, 46; Cd, 28). Cells in the log phase at 5.0 mg DCW/ml, pH 5.5, and 35°C for 45 min were optimal conditions for strain KMS24 and there were no significant differences for the removal percentages of HMs with either incubating conditions (averages: Pb, 96; Cu, 75; Zn, 46; Cd, 30). The presence of Ca 2? and Mg 2? significantly decreased the removal capacity of HMs for both strains.
This research aimed to study the diversity of purple nonsulfur bacteria (PNSB) and to investigate the effect of Hg concentrations in shrimp ponds on PNSB diversity. Amplification of the pufM gene was detected in 13 and 10 samples of water and sediment collected from 16 shrimp ponds in Southern Thailand. In addition to PNSB, other anoxygenic phototrophic bacteria (APB) were also observed; purple sulfur bacteria (PSB) and aerobic anoxygenic phototrophic bacteria (AAPB) although most of them could not be identified. Among identified groups; AAPB, PSB and PNSB in the samples of water and sediment were 25.71, 11.43 and 8.57%; and 27.78, 11.11 and 22.22%, respectively. In both sample types, Roseobacter denitrificans (AAPB) was the most dominant species followed by Halorhodospira halophila (PSB). In addition two genera, observed most frequently in the sediment samples were a group of PNSB (Rhodovulum kholense, Rhodospirillum centenum and Rhodobium marinum). The UPGMA dendrograms showed 7 and 6 clustered groups in the water and sediment samples, respectively. There was no relationship between the clustered groups and the total Hg (HgT) concentrations in the water and sediment samples used (<0.002-0.03 μg/L and 35.40-391.60 μg/kg dry weight) for studying the biodiversity. It can be concluded that there was no effect of the various Hg levels on the diversity of detected APB species; particularly the PNSB in the shrimp ponds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.