MicroRNA exhibits differential expression levels in cancer and can affect cellular transformation, carcinogenesis and metastasis. Although fluorescence techniques using dye molecule labels have been studied, label-free molecular-level quantification of miRNA is extremely challenging. We developed a surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155. First-principles energetic calculations reveal that antimonene has substantially stronger interaction with ssDNA than the graphene that has been previously used in DNA molecule sensing, due to thanking for more delocalized 5s/5p orbitals in antimonene. The detection limit can reach 10 aM, which is 2.3–10,000 times higher than those of existing miRNA sensors. The combination of not-attempted-before exotic sensing material and SPR architecture represents an approach to unlocking the ultrasensitive detection of miRNA and DNA and provides a promising avenue for the early diagnosis, staging, and monitoring of cancer.
Even though the nonlinear optical effects of solution processed organic-inorganic perovskite films have been studied, the nonlinear optical properties in two-dimensional (2D) perovskites, especially their applications for ultrafast photonics, are largely unexplored. In comparison to bulk perovskite films, 2D perovskite nanosheets with small thicknesses of a few unit cells are more suitable for investigating the intrinsic nonlinear optical properties because bulk recombination of photocarriers and the nonlinear scattering are relatively small. In this research, we systematically investigated the nonlinear optical properties of 2D perovskite nanosheets derived from a combined solution process and vapor phase conversion method. It was found that 2D perovskite nanosheets have stronger saturable absorption properties with large modulation depth and very low saturation intensity compared with those of bulk perovskite films. Using an all dry transfer method, we constructed a new type of saturable absorber device based on single piece 2D perovskite nanosheet. Stable soliton state mode-locking was achieved, and ultrafast picosecond pulses were generated at 1064 nm. This work is likely to pave the way for ultrafast photonic and optoelectronic applications based on 2D perovskites.
The presence of a direct band gap and high carrier mobility in few-layer black phosphorus (BP) offers opportunities for using this material for infrared (IR) light detection. However, the poor air stability of BP and its large contact resistance with metals pose significant challenges to the fabrication of highly efficient IR photodetectors with long lifetimes. In this work, we demonstrate a graphene-BP heterostructure photodetector with ultrahigh responsivity and long-term stability at IR wavelengths. In our device architecture, the top layer of graphene functions not only as an encapsulation layer but also as a highly efficient transport layer. Under illumination, photoexcited electron-hole pairs generated in BP are separated and injected into graphene, significantly reducing the Schottky barrier between BP and the metal electrodes and leading to efficient photocurrent extraction. The graphene-BP heterostructure phototransistor exhibits a long-term photoresponse at near-infrared wavelength (1550 nm) with an ultrahigh photoresponsivity (up to 3.3 × 10 A W), a photoconductive gain (up to 1.13 × 10), and a rise time of about 4 ms. Considering the thickness-dependent band gap in BP, this material represents a powerful photodetection platform that is able to sustain high performance in the IR wavelength regime with potential applications in remote sensing, biological imaging, and environmental monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.