Today, automatic identification of individuals from biometric features is widely used in identification and authentication, security, and monitoring applications. Since facial recognition is a more user-friendly and comfortable method than other biometric methods, it has grown rapidly in recent years. However, most facial recognition systems are vulnerable to spoofing attacks. Therefore, face liveness detection (FLD) methods are of great importance. On the other hand, unlike traditional methods, deep learning techniques promise to significantly increase the accuracy of facial liveness detection systems and eliminate the difficulties of the real-world implementation of these systems. Therefore, in this paper, the application of some deep learning models to detect face liveness is reviewed and compared with each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.