The neurofibromatosis type 2 (NF2) tumor suppressor, Merlin, is a membrane/cytoskeleton-associated protein that mediates contact-dependent inhibition of proliferation. Here we show that upon cell–cell contact Merlin coordinates the processes of adherens junction stabilization and negative regulation of epidermal growth factor receptor (EGFR) signaling by restraining the EGFR into a membrane compartment from which it can neither signal nor be internalized. In confluent Nf2 −/− cells, EGFR activation persists, driving continued proliferation that is halted by specific EGFR inhibitors. These studies define a new mechanism of tumor suppression, provide mechanistic insight into the poorly understood phenomenon of contact-dependent inhibition of proliferation, and suggest a therapeutic strategy for NF2-mutant tumors.
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer’s disease and Parkinson’s disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
Inflammation and insulin resistance associated with visceral obesity are important risk factors for the development of type 2 diabetes, atherosclerosis, and the metabolic syndrome. The 12/15‐lipoxygenase (12/15‐LO) enzyme has been linked to inflammatory changes in blood vessels that precede the development of atherosclerosis. The expression and role of 12/15‐LO in adipocytes have not been evaluated. We found that 12/15‐LO mRNA was dramatically upregulated in white epididymal adipocytes of high‐fat fed mice. 12/15‐LO was poorly expressed in 3T3‐L1 fibroblasts and was upregulated during differentiation into adipocytes. Interestingly, the saturated fatty acid palmitate, a major component of high fat diets, augmented expression of 12/15‐LO in vitro. When 3T3‐L1 adipocytes were treated with the 12/15‐LO products, 12‐hydroxyeicosatetranoic acid (12(S)‐HETE) and 12‐hydroperoxyeicosatetraenoic acid (12(S)‐HPETE), expression of proinflammatory cytokine genes, including tumor necrosis factor‐α (TNF‐α), monocyte chemoattractant protein 1 (MCP‐1), interleukin 6 (IL‐6), and IL‐12p40, was upregulated whereas anti‐inflammatory adiponectin gene expression was downregulated. 12/15‐LO products also augmented c‐Jun N‐terminal kinase 1 (JNK‐1) phosphorylation, a known negative regulator of insulin signaling. Consistent with impaired insulin signaling, we found that insulin‐stimulated 3T3‐L1 adipocytes exhibited decreased IRS‐1(Tyr) phosphorylation, increased IRS‐1(Ser) phosphorylation, and impaired Akt phosphorylation when treated with 12/15‐LO product. Taken together, our data suggest that 12/15‐LO products create a proinflammatory state and impair insulin signaling in 3T3‐L1 adipocytes. Because 12/15‐LO expression is upregulated in visceral adipocytes by high‐fat feeding in vivo and also by addition of palmitic acid in vitro, we propose that 12/15‐LO plays a role in promoting inflammation and insulin resistance associated with obesity.
The heterogeneity of biological processes driving the severity of nonalcoholic fatty liver disease (NAFLD) as reflected in the transcriptome and the relationship between the pathways involved are not well established. Well-defined associations between gene expression profiles and disease progression would benefit efforts to develop novel therapies and to understand disease heterogeneity. We analyzed hepatic gene expression in controls and a cohort with the full histological spectrum of NAFLD. Protein-protein interaction and gene set variation analysis revealed distinct sets of coordinately regulated genes and pathways whose expression progressively change over the course of the disease. The progressive nature of these changes enabled us to develop a framework for calculating a disease progression score for individual genes. We show that, in aggregate, these scores correlate strongly with histological measures of disease progression and can thus themselves serve as a proxy for severity. Furthermore, we demonstrate that the expression levels of a small number of genes (~20) can be used to infer disease severity. Finally, we show that patient subgroups can be distinguished by the relative distribution of gene-level scores in specific gene sets. While future work is required to identify the specific disease characteristics that correspond to patient clusters identified on this basis, this work provides a general framework for the use of high-content molecular profiling to identify NAFLD patient subgroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.