High soil salinity is a major abiotic stress in plant agriculture worldwide. Here, we report the characterization of a novel aquaporin gene TaNIP (Triticum asetivum L. nodulin 26-like intrinsic protein), which was involved in salt tolerance pathways in plants. TaNIP was identified and cloned through the gene chip expression analysis of a salt-tolerant wheat mutant RH8706-49 under salt stress. Quantitative reverse transcription-PCR (Q-RT-PCR) was used to detect TaNIP expression under salt, drought, cold and ABA treatment. The overexpression of TaNIP in transgenic Arabidopsis produced higher salt tolerance than wild-type plants. Localization analysis showed that TaNIP proteins tagged with green fluorescent protein (GFP) were localized to the cell plasma membrane. Under salt stress treatment, TaNIP-overexpressing Arabidopsis accumulated higher K(+), Ca(2+) and proline contents and lower Na(+) level than the wild-type plants. The overexpression of TaNIP in transgenic Arabidopsis also up-regulated the expression of a number of stress-associated genes. Our results suggest that TaNIP plays an important role in salt tolerance in Arabidopsis and can also enhance plants' tolerance to other abiotic stresses.
The root microsomal proteomes of salt-tolerant and salt-sensitive wheat lines under salt stress were analyzed by two-dimensional electrophoresis and mass spectrum. A wheat V-H(+)-ATPase E subunit protein was obtained whose expression was enhanced by salt stress. In silicon cloning identified the full-length cDNA sequences of nine subunits and partial cDNA sequences of two subunits of wheat V-H(+)-ATPase. The expression profiles of these V-H(+)-ATPase subunits in roots and leaves of both salt-tolerant and salt-sensitive wheat lines under salt and abscisic acid (ABA) stress were analyzed. The results indicate that the coordinated enhancement of the expression of V-H(+)-ATPase subunits under salt and ABA stress is an important factor determining improved salt tolerance in wheat. The expression of these subunits was tissue-specific. Overexpression of the E subunit by transgenic Arabidopsis thaliana was able to enhance seed germination, root growth and adult seedling growth under salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.