ABSTRACT:With the objective of making calcium alginate gel beads with small and uniform size, membrane emulsification coupled with internal gelation was proposed. Spherical gel beads with mean size of about 50 m, and even smaller ones in water, and with narrow size distribution were successfully obtained. Experimental studies focusing mainly on the effect of process parameters on bead properties were performed. The size of the beads was mainly dependent on the diameter of the membrane pores. High transmembrane pressure made for large gel beads with wide size distribution. Low sodium alginate concentration produced nonspherical beads, whereas a high concentration was unsuitable for the production of small beads with narrow distribution. Thus 1.5% w/v was enough. A high surfactant concentration favored the formation of small beads, but the adverse effect on mass transfer should be considered in this novel process.
The development of a gastric floating-bioadhesive drug delivery system to increase the efficacy of clarithromycin against Helicobacter pylori is described. Floating-bioadhesive microparticles containing clarithromycin were prepared by a combined method of emulsification/evaporation and internal/ion gelation for the treatment of H. pylori infection. Ethylcellulose microspheres (EMs) were prepared by the dispersion of clarithromycin, ethylcellulose, and chitosan in dichloromethane and subsequent solvent evaporation. EMs were coated with alginate by the internal gelation process to obtain alginate-ethylcellulose microparticles (AEMs); then, AEMs were dispersed in a chitosan solution, and chitosanalginate-ethylcellulose microparticles (CAEMs) were obtained by ion gelation to enhance the bioadhesive properties. The morphologies of EMs and CAEMs were investigated under optical and scanning electron microscopes. In vitro buoyancy and drug-release testing confirmed the good floating and sustained-release properties of CAEMs. About 74% of the CAEMs floated in an acetate buffer solution for 8 h, and 90% of the clarithromycin contained in the CAEMs was released within 8 h in a sustained manner. In vivo mucoadhesive testing showed that 61% of the CAEMs could be retained in the stomach for 4 h. Under a pretreatment with omeprazole, the clarithromycin concentration in gastric mucosa of the CAEM group was higher than that of the clarithromycin solution group. These results suggest that CAEMs might be a promising drug delivery system for the treatment of H. pylori infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.