Systemic injury plays a central role in severe acute pancreatitis (SAP). Retrograde biliopancreatic duct infusion of sodium taurocholate (NaT) is commonly used to establish SAP animal models. To better characterize the systemic injury in this model, SAP was induced in Sprague-Dawley rats by NaT administration (3.5 or 5%), followed by sacrifice at 3, 6, 9, 12, 24, 48 and 72 h. Normal saline was used as a control in Sham-operated rats. The mortality rate, ascites volume, and serum and ascitic fluid amylase and lipase activities were assessed. Multiple organ dysfunction, including dysfunction of the pancreas, lung, ileum, liver, and kidney, was investigated using hematoxylin and eosin staining. The interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in the ascitic fluid, serum, and ileum tissues were evaluated using an enzyme-linked immunosorbent assay (ELISA). Tight junction proteins, zonula occludens-1 (ZO-1) and occludin, in ileum tissues were studied using immunofluorescence. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CRE) and urea levels were measured using an automatic biochemical analyzer. The results of the present study indicated that both 3.5 and 5% NaT could induce a stable elevation of pancreatitis indices, with histopathological injury of the pancreas, lungs and ileum (5% NaT). The ascitic fluid levels of IL-6 and IL-1β were increased in the 5% NaT group. ALT and AST levels increased temporarily and recovered in 72 h, without a significant increase in CRE and urea levels or apparent hepatic and renal pathological injury. In conclusion, rats with NaT-induced SAP have characteristics of necrotizing hemorrhagic pancreatitis with multiple organ injuries, including inflammatory lung injury, ischemic intestinal injury and slight liver and kidney injuries.
Background. Li Chang decoction (LCD), a Chinese medicine formula, is commonly used to treat ulcerative colitis (UC) in clinics. Purpose. This study aimed to identify the major components in LCD and its prototype and metabolic components in rat biological samples. Methods. The chemical constituents in LCD were identified by establishing a reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MS) method. Afterwards, the rats were orally administered with LCD, and the biological samples (plasma, urine, and feces) were collected for further analyzing the effective compounds in the treatment of UC. Result. A total of 104 compounds were discriminated in LCD, including 26 flavonoids, 20 organic acids, 20 saponins, 8 amino acids, 5 oligosaccharides, 5 tannins, 3 lignans, 2 alkaloids, and 15 others (nucleosides, glycosides, esters, etc.). About 50 prototype and 94 metabolic components of LCD were identified in biological samples. In total, 29 prototype components and 22 metabolic types were detected in plasma. About 27 prototypes and 96 metabolites were discriminated in urine, and 34 prototypes and 18 metabolites were identified in feces. Conclusion. The flavonoids, organic acids, and saponins were the major compounds of LCD, and this study promotes the further pharmacokinetic and pharmacological evaluation of LCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.