Reversible S-palmitoylation is an important post-translational modification that regulates the trafficking, localization, and activity of proteins. Cysteine-rich Asp-His-His-Cys (DHHC) domain-containing enzymes are evolutionarily conserved protein palmitoyl acyltransferases (PATs). The human genome encodes 23 DHHC-PATs that regulate diverse cellular functions. Although chemical probes and proteomic methods to detect palmitoylated protein substrates have been reported, no probes for direct detection of the activity of PATs are available. Here we report the synthesis and characterization of 2-bromohexadec-15-ynoic acid and 2-bromooctadec-17-ynoic acid, which are analogues of 2-bromopalmitate (2-BP), as activity-based probes for PATs as well as other palmitoylating and 2-BP-binding enzymes. These probes will serve as new chemical tools for activity-based protein profiling to explore PATs, to dissect the functions of PATs in cell signaling and diseases, and to facilitate the identification of their inhibitors.
A Pd-catalyzed intramolecular asymmetric allylic alkylation (AAA) reaction with "hard" carbanions has been developed for the first time, affording 2,3-disubstituted indanones with high diastereo- and enantioselectivities. The transformation of these products into other core structures of natural products has been demonstrated.
Dynamic palmitoylation is an important post-translational modification regulating protein localization, trafficking, and signaling activities. The Asp-His-His-Cys (DHHC) domain containing enzymes are evolutionarily conserved palmitoyl acyltransferases (PATs) mediating diverse protein S-palmitoylation. Cerulenin is a natural product inhibitor of fatty acid biosynthesis and protein palmitoylation, through irreversible alkylation of the cysteine residues in the enzymes. Here, we report the synthesis and characterization of a "clickable" and long alkyl chain analogue of cerulenin as a chemical probe to investigate its cellular targets and to label and profile PATs in vitro and in live cells. Our results showed that the probe could stably label the DHHC-family PATs and enable mass spectrometry studies of PATs and other target proteins in the cellular proteome. Such probe provides a new chemical tool to dissect the functions of palmitoylating enzymes in cell signaling and diseases and reveals new cellular targets of the natural product cerulenin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.